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The lecture course is devoted to the iterative solution methods for finite-
dimensional variational inequalities, which arise when approximating differential
variational inequalities of mechanics and physics by finite element or finite dif-
ference methods. Such finite-dimensional inequalities are united by the notation
”mesh variational inequalities”.

The iterative methods for two classes of finite-dimensional variational in-
equalities are studied: inequalities with positive definite matrices and inequali-
ties with ”saddle” matrices. By ”saddle” we call the symmetric matrices with
both positive and negative eigenvalues.

Existence theorems and convergence results for the iterative methods are
cited without proofs, which can be found in [11]. Main attention is paid to

applications of the general results to the mesh approximations of the differ-
ential variational inequalities,

discussing the implementation details of the iterative algorithms.

The lecture is organised as follows.
The first section contains simple examples of the mesh variational inequali-

ties, elements of the convex functions theory and the equivalent formulations of
the variational inequalities.

In the second section basic iterative methods for the variational inequalities
with positive definite matrices are considered. These methods are: one-step sta-
tionary methods, relaxation methods for the potential problems and splitting
iterative methods. General convergence results are applied to the mesh varia-
tional inequalities with simple constraints, when all of the considered iterative
methods can be easily implemented.

The iterative methods for the variational inequalities approximating the dif-
ferential problems with constraints on the gradient of a solution are the topic
of the third section. Lagrange multipliers approach is used to transform these
inequalities to ones containing simple constraints and saddle matrices instead of
positive definite matrices. Uzawa and Arrow-Hurwicz methods and their gener-
alisations, as well as splitting methods, are analysed for this class of variational
inequalities.
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§1 Extremal problems, variational inequalities
and inclusions with multivalued operators

1.1 Variational inequalities with sets of constraints

1.1.1 General remarks

Consider the minimisation problem

t∗ = arg min
t∈[0,1]

F (t) (1.1)

with a differentiable in the points of [0, 1] function F . If t∗ is a solution of (1.1),
then t∗ satisfies the variational inequality

F ′(t∗)(t− t∗) > 0 ∀t ∈ [0, 1]. (1.2)

In fact, when t∗ is a solution of (1.1), then one of the following variants is true:

t∗ ∈ (0, 1) ⇒ F ′(t∗) = 0;
t∗ = 0 ⇒ F ′(t∗) > 0;
t∗ = 1 ⇒ F ′(t∗) 6 0.

All these variants can be combined in variational inequality (1.2).

Let now K be a closed and convex set in Rn, function F : Rn → R be
differentiable in K and ∇F (x) be its gradient in the point x.

Consider minimisation problem

x∗ = arg min
x∈K

F (x) (1.3)

and variational inequality

x∗ ∈ K : (∇F (x∗), x− x∗) > 0 ∀x ∈ K. (1.4)

Lemma 1.1. If x∗ is a solution of (1.3), then x∗ satisfies variational inequality
(1.4). In case of convex function F both these problems, (1.3) and (1.4), are
equivalent.

Proof. If x∗ is a solution of (1.3), then for a fixed x ∈ K function ϕ(t) =
F (x∗ + t(x − x∗)) attains its minimum over [0, 1] at the point t = 0, and from
the previous result it follows

ϕ′(0) = (∇F (x∗), x− x∗) > 0.

Let now F be a convex function, then for any x ∈ K and any λ ∈ (0, 1)

F (x∗ + λ(x− x∗))− F (x∗) 6 λ (F (x)− F (x∗)),

whence F (x) − F (x∗) > λ−1 (F (x∗ + λ(x − x∗) − F (x∗)). Passing to the limit
for λ → 0 one get

F (x)− F (x∗) > (∇F (x∗), x− x∗) ∀x ∈ K. (1.5)

From inequality (1.5) obviously follows that a solution of variational inequality
(1.4) is a minimum of F (x) over K.
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A partial case of (1.3) is the problem to minimise a quadratical function

F (x) =
1
2
(Ax, x)− (f, x),

where A ∈ Rn×n is a symmetric and positive definite matrix (A = AT > 0) and
f ∈ Rn is a given vector. In this case ∇F (x) = Ax − f , and the variational
inequality, which is equivalent to the minimisation problem, becomes

(Ax∗, x− x∗) > (f, x− x∗) ∀x ∈ K. (1.6)

It is called as variational inequality with a linear main operator A.

1.1.2 Examples of mesh variational inequalities.

Example 1.1. Obstacle problem. Finite difference approximation.

Let K = {u ∈ H1
0 (Ω) : u(t) > 0 in Ω} be a convex set in Sobolev space

H1
0 (Ω) and f ∈ L2(Ω) be a given function. Obstacle problem is the following

variational inequality: find u ∈ K, such that
∫

Ω

∇u · ∇(v − u)dt >
∫

Ω

f(t)(v − u)dt ∀v ∈ K. (1.7)

Variational inequality (1.7) has a unique solution u, which is at the same time
the unique solution of the minimisation problem

u = arg min
v∈K

{J(v) =
1
2

∫

Ω

|∇v|2dt−
∫

Ω

fvdt}. (1.8)

Moreover, if f(t) is continuous, then solution u(t) is quite regular (belongs to
Sobolev space H2(Ω)) and (1.7) can be written in the pointwise form

(−∆u− f)(t) > 0, u(t) > 0, u(t) (∆u + f)(t) = 0 for t ∈ Ω,

u(t) = 0 for t ∈ ∂Ω.
(1.9)

First, we approximate the one-dimensional obstacle problem with Ω = (0, 1)
by a finite-difference scheme on a uniform grid.

Supposing f to be continuous, we can use any of three formulation of the
problem, namely, variational inequality (1.7), minimising problem (1.8) or point-
wise form (1.9), to construct a finite-difference scheme. Now we choose (1.8),
i.e. approximation of the functional

J(u) =
1
2

1∫

0

(u′)2dt−
∫

Ω

fudt

4



over the set K = {u(t) > 0 for t ∈ (0, 1), u(t) = 0 for t = 0 and for t = 1}.
Let

ω̄ = {ti = i h, i = 0, 1, . . . , n + 1}, (n + 1) h = 1,

be a uniform mesh on the segment [0, 1] with meshsize h > 0, ui = u(ti)(u0 =
un+1 = 0) and fi = f(ti). Functional J is approximated by a convex and
differentiable (quadratical) function

Jh(u) =
h

2

(
u2

1

h2
+

n−1∑

i=1

(
ui+1 − ui

h

)2

+
u2

n

h2

)
− h

n∑

i=1

fiui.

When constructing this approximation, we use the difference quotients for the
approximation of the first derivative

u′(ti) ≈ ui+1 − ui

h
, u′(ti) ≈ ui − ui−1

h

and the quadrature rules for the approximation of the integrals

1∫

0

F (t)dt ≈ h

n∑

i=0

F (ti),

1∫

0

F (t)dt ≈ h

n+1∑

i=1

F (ti) for any continuous function F (t).

The gradient of Jh is ∇Jh(u) = h (Au− f), where

A = h−2




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 −1 2




. (1.10)

Denote by K = {u ∈ Rn : ui > 0 ∀i} a convex set and by (., .) usual euclidian
scalar product in Rn. Owing to Lemma 1.1 the problem of the minimisation of
Jh over K is equivalent to variational inequality

(Au, v − u) > (f, v − u) ∀v ∈ K. (1.11)

The eigenvalues of the matrix A are known: λk = 4h−2 sin2 kπh

2
, k =

1, 2, . . . , n. In particular, minimal and maximal eigenvalues are

λ1 = 4h−2 sin2 πh

2
= O(1), λn = 4h−2 cos2

πh

2
= O(h−2) as h → 0,

so, condition number of the matrix A is

cond2 A =
λn

λ1
= O(h−2).

This simple example contains all basic features of the mesh problems,
in particular, mesh variational inequalities which approximate the differential
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problems: high dimension n, big condition number, sparse matrix (small
number of nonzero entries in all rows and columns of the matrix). 2

Now, consider the two-dimensional obstacle problem and approximate it by
using pointwise formulation (1.9).

Let Ω = (0, 1) × (0, 1) be the unit square with the boundary ∂Ω and Ω =
Ω ∩ ∂Ω, let further f(t) = f(t1, t2) be a continuous in Ω function. Denote by
ω̄ = {t = (ih, jh) : 0 6 i, j 6 p + 1, (p + 1)h = 1} a uniform grid on Ω with
meshsize h > 0, by γ = ω̄ ∩ ∂Ω the set of its boundary nodes and by ω = ω̄ \ γ
the set of its internal nodes.

Below uh is a mesh function — function in p2-dimensional space, — which is
uniquely defined by its nodal values uij = uh(ih, jh) for (ih, jh) ∈ ω̄ and which
is equal to zero in the nodes (ih, jh) ∈ γ. Let also fh be the mesh function with
nodal values fh(t) = f(t) for t ∈ ω.

To approximate the derivatives of a smooth function u(t) in the internal
nodes (ih, jh) ∈ ω the following difference quotients are used:

∂u

∂t1
(ih, jh) ≈ uij − ui−1j

h
≡ ∂̄1uh,

∂u

∂t1
(ih, jh) ≈ uij+1 − uij

h
≡ ∂1uh,

∂2u

∂t21
(ih, jh) ≈ 2uij − ui−1j − ui+1j

h2
≡ ∂̄1∂1uh = ∂1∂̄1uh.

Further ∆huh = ∂̄1∂1uh + ∂̄2∂2uh is mesh Laplace operator defined in the nodes
of ω.

Finite-difference approximation of (1.9) reads as

−∆huh − fh > 0, uh > 0, uh(∆huh + fh) = 0 in ω,

uh = 0 on γ.
(1.12)

Problem (1.12) has dimension n = p2, and its unknowns are uij , i, j =
1, 2, . . . , p. To write this problem in a matrix-vector form we need to present
the set {uij} in the form of a vector from Rn. And this is equivalent to the
choice of a enumeration (ordering) for the set of the mesh nodes ω. A tradi-
tional enumeration is so-called lexicographical one: ”from left to right and from
down to top”. When using this enumeration one obtains a vector y ∈ Rn by
the following rule:

y1 = u1,1, y2 = u2,1, . . . , yp = up,1, yp+1 = u1,2, yp+2 = u2,2, . . . , yp2 = up,p.

With lexicographical ordering for the set of the mesh nodes, the following sym-
metric and block-tridiagonal matrix A ∈ Rn×n corresponds to the mesh Laplace
operator −∆h:

A = h−2




D −E 0 . . . 0
−E D −E . . . 0
. . . . . . . . . . . . . . .
0 0 . . . D −E
0 0 . . . −E D




, D =




4 −1 0 . . . 0
−1 4 −1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . 4 −1
0 0 . . . −1 4




,

(1.13)
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where D ∈ Rp×p, E is unit p× p matrix.
Let vector f ∈ Rn corresponds to mesh function fh, then system (1.12)

becomes
(Ay − f)i > 0, yi > 0, (Ay − f)i yi = 0 ∀i.

This is so-called complementarity problem, which is equivalent to variational
inequality

y ∈ K : (Ay, z − y) > (f, z − y) ∀z ∈ K, K = {z ∈ Rn : zi > 0 ∀i}, (1.14)

with symmetric and positive definite matrix A and closed convex set K. Also,
because of the symmetry of A, variational inequality (1.14) is equivalent to the

problem of minimisation of the function
1
2
(Ay, y)− (f, y) over the set K.2

Example 1.2. Obstacle problem with diffusion-convection operator.

Consider variational inequality
∫

Ω

∇u · ∇(v − u)dt +
∫

Ω

ā · ∇u(v − u)dt >
∫

Ω

f(v − u)dt ∀v ∈ K (1.15)

with a given constant vector ā and set of constraints

K = {u ∈ H1
0 (Ω) : u(t) > 0 in Ω}.

Variational inequality (1.15) has a unique solution u(t) and if it is smooth
enough, then (1.15) can be written in the pointwise form

−∆u + ā · ∇u− f > 0, u > 0, u (−∆u + ā · ∇u− f) = 0 in Ω (1.16)

with Dirichlet boundary condition u = 0 on ∂Ω.
Let Ω = (0, 1) × (0, 1) be the unit square. We approximate problem (1.16)

by a finite-difference scheme on a uniform grid keeping the notations for the
mesh sets difference quotients from Example 1.1. For definiteness we suppose
the coordinates a1 and a2 of the vector ā to be positive. Then finite-difference
approximation of (1.16) reads as follows:
{
−∆huh + ā · ∇uh − fh > 0, uh > 0, uh(−∆huh + ā · ∇uh − fh) = 0 in ω,

uh = 0 on γ.

(1.17)
Here ā·∇huh = a1∂̄1uh+a2∂̄2uh is the up-wind approximation of the convective
term.

Let a vector u ∈ Rn, n = p2, corresponds to a mesh function uh for lex-
icographical enumeration of the mesh nodes. Then u satisfies a variational
inequality

u ∈ K : (Ãu, v − u) > (f, v − u) ∀v ∈ K, K = {u ∈ Rn : ui > 0 ∀i}
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with a matrix Ã, which corresponds to mesh operator −∆h + ā ·∇h. This matrix
equals to the sum of the matrix A from (1.13) and the block-twodiagonal matrix

L = h−1




L1 0 . . . 0 0
−a2E L1 . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . L1 0
0 0 . . . −a2E L1



∈ Rn×n,

where

L1 =




a1 + a2 0 . . . 0 0
−a1 a1 + a2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . a1 + a2 0
0 0 . . . −a1 a1 + a2



∈ Rp×p.

Below, in Example 2.2, we will prove that matrix Ã is positive definite, so, once
again we deal with a variational inequality with a positive definite matrix. 2

Example 1.3. Obstacle problem. Finite element approximation.

Let Ω ∈ R2 be a polygon and let Th = {δi}i be its conforming triangulation,
i.e. decomposition into non-overlapping triangles, which can have only common
sides or common vertices. Denote by hi the diameter of a triangle δi, and by
h = max

i
hi. Define the space of the linear functions P1 = {p(t) = c0 + c1t1 +

c2t2, ci ∈ R}, the spaces of the mesh functions

Vh = {uh ∈ C(Ω) : uh ∈ P1 ∀δ ∈ Th}, V 0
h = {uh ∈ Vh : uh(t) = 0 ∀t ∈ ∂Ω}

and the set
Kh = {uh ∈ V 0

h : uh(t) > 0 ∀t ∈ Ω}.
Approximation by finite element method of obstacle problem (1.7) is the follow-
ing finite-dimensional variational inequality:

uh ∈ Kh :
∫

Ω

∇uh · ∇(vh − uh)dt >
∫

Ω

f(t)(vh − uh)dt ∀vh ∈ Kh. (1.18)

Let ωh = {ti}n
i=1 be the set of the vertices in Ω of the triangles δ ∈ Th, n =

card ωh. Put in the correspondence to a function vh ∈ V 0
h the vector v ∈ Rn with

the coordinates vi = vh(ti), ti ∈ ωh, (using an enumeration of ti). Further we
will use the notation v ⇔ vh for this correspondence. Let K = {u ∈ Rn : ui >
0 ∀i}. Owing to the choice of the piecewise-linear functions in the construction
of the space Vh, the constraints uh ∈ Kh are equivalent to the constraints u ∈ K
for the nodal values of uh, i. e. Kh 3 uh ⇔ u ∈ K.
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A matrix A (called as stiffness matrix in finite element method) and a vector
f (called as a load vector) are defined by

(Au, v) =
∫

Ω

∇uh(t) · ∇vh(t)dt, (f, v) =
∫

Ω

f(t)vh(t)dt, u ⇔ uh, v ⇔ vh.

Now variational inequality (1.18) can be written in the form

u ∈ K : (Au, v − u) > (f, v − u) ∀v ∈ K

with positive definite matrix A and closed convex set K. 2

1.2 Variational inequalities with non-differentiable func-
tions.

1.2.1 General remarks

Let F : Rn → R be a differentiable function and ϕ : Rn → R be a convex
function. Consider minimisation problem

x∗ = arg min
x∈Rn

(F (x) + ϕ(x)) (1.19)

and variational inequality

x∗ ∈ Rn : (∇F (x∗), x− x∗) + ϕ(x)− ϕ(x∗) > 0 ∀x ∈ Rn. (1.20)

Lemma 1.2. If x∗ is a solution of (1.19), then x∗ satisfies variational inequality
(1.20).

In case of convex function F problems (1.19) and (1.20) are equivalent.

Proof. If x∗ is a solution of (1.19), then for any fixed x ∈ Rn and any λ ∈ (0, 1)

0 6 (F (x∗ + λ(x− x∗)) + ϕ(x∗ + λ(x− x∗)))− (F (x∗) + ϕ(x∗))

6 (F (x∗ + λ(x− x∗))− (F (x∗)) + λ(ϕ(x)− ϕ(x∗)).

Dividing both parts of this inequality by λ and passing to the limit for λ → +0,
one immediately obtains variational inequality (1.20).

In case of a convex function F inequality (1.5) gives

F (x)− F (x∗) + ϕ(x)− ϕ(x∗) > (∇F (x∗), x− x∗) + ϕ(x)− ϕ(x∗) ∀x ∈ Rn,

whence the second statement of the lemma.

In partial case

F (x) =
1
2
(Ax, x)− (f, x) + ϕ(x), A = AT > 0,

with non-differentiable function ϕ minimisation problem is equivalent to varia-
tional inequality

(Ax∗, x− x∗) + ϕ(x)− ϕ(x∗) > (f, x− x∗) ∀x ∈ Rn (1.21)

with linear main operator A.
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1.2.2 Examples of mesh variational inequalities.

Example 1.4. Consider a problem of the minimisation

J(u) = 1/2

1∫

0

u′ 2(t)dt−
1∫

0

f(t)u(t)dt +

1∫

0

|u(t)|dt. (1.22)

over the space H1
0 (0, 1) and approximate it by a finite-difference scheme on a

uniform grid.
Let ω̄ = {ti = i h, i = 0, . . . , n+1; (n+1) h = 1}, ui = u(ti)(u0 = un+1 = 0)

and fi = f(ti). Functional (1.22) is approximated by a convex function

Jh(u) =
h

2

(
u2

1

h2
+

n−1∑

i=1

(
ui+1 − ui

h

)2

+
u2

n

h2

)
− h

n∑

i=1

fiui + h

n∑

i=1

|ui|.

Due to Lemma 1.2 the minimisation of this function over the vector space Rn

is equivalent to solving variational inequality

u ∈ Rn : (Au, v − u) + ϕ(v)− ϕ(u) > (f, v − u) ∀v ∈ Rn

with positive definite and symmetric matrix A defined in (1.10), and with convex

and continuous function ϕ(u) = h

n∑

i=1

|ui|.2

Example 1.5. Model problem of the contact with friction.

Let Ω be a polygon in R2. The problem under consideration is to find a
function u ∈ H1

0 (Ω), such that
∫

Ω

∇u · ∇(v − u)dt +
∫

Ω

(|v| − |u|)dt >
∫

Ω

f(t)(v − u)dt ∀v ∈ H1
0 (Ω). (1.23)

We approximate variational inequality (1.23) by a finite element method. Let
the triangulation Th and the space V 0

h be as in Example 1.3. To approximate
non-differentiable functional the following quadrature formulae is used:

∫

Ω

|uh(t)|dt ≈ Sh(|uh|) =
∑

δ∈Th

Sδ(|uh|), Sδ(|uh|) =
mes δ

3

3∑

i=1

|uh(ai)|,

where {ai}3i=1 are the vertices of a finite element (triangle) δ ∈ Th.
Finite element scheme, approximating problem (1.23), is the following mesh

variational inequality:

find uh ∈ V 0
h such that for all vh ∈ V 0

h

∫

Ω

∇uh · ∇(vh − uh)dt + Sh(|vh|)− Sh(|uh|) >
∫

Ω

f(t)(vh − uh)dt.
(1.24)
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Let ωh = {ti}n
i=1 be the set of the vertices in Ω of the triangles δ ∈ Th, n =

card ωh. Define stiffness matrix A, load vector f and the function ϕ by the
equalities

(Au, v) =
∫

Ω

∇uh(t) · ∇vh(t)dt, (f, v) =
∫

Ω

f(t)vh(t)dt, ϕ(u) = Sh(|uh|)

for u ⇔ uh, v ⇔ vh. It is easy to see, that

ϕ(u) =
n∑

i=1

αi|ui| αi > 0.

Now, mesh variational inequality (1.24) can be written in the form

u ∈ Rn : (Au, y − u) + ϕ(y)− ϕ(u) > (f, y − u) ∀y ∈ Rn

with positive definite and symmetric matrix A, and with convex and continuous
function ϕ. 2

1.3 Variational inequalities and inclusions with multival-
ued operators.

1.3.1 Convex functions and subdifferentials

Function F : Rn → R is called:

— convex, if F (tx+(1− t)y) 6 tF (x)+ (1− t)F (y) ∀x, y ∈ Rn, ∀t ∈ (0, 1);

— strictly convex, if F (tx+(1−t)y) < tF (x)+(1−t)F (y) ∀x 6= y ∈ Rn, ∀t ∈
(0, 1);

— proper, if F (x) > −∞ ∀x ∈ Rn and its effective set is nonempty: domF =
{x ∈ Rn : F (x) < +∞} 6= ∅;

— lower semicontinuous, if xk → x ⇒ lim inf F (xk) > F (x).

Let function F : Rn → R be convex, proper and lower semicontinue. Then
a vector µ ∈ Rn is called subgradient of the function F at a point x, if

F (y)− F (x) > (µ, y − x) ∀y ∈ Rn.

The set of all subdgradients of F at a point x forms the subdifferential ∂F (x) of
F at a point x. Multivalued operator ∂F has a domain of definition D(∂F ) ⊆
domF and a set of values in Rn. To underline that the values of ∂F in general
case are the sets in Rn, they write ∂F : Rn → 2R

n

.
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Properties of subdifferentials

1) Subdifferential ∂F (x) is a convex and closed set (possibly empty). If F is
differentiable at a point x ∈ Rn, then its subdifferential ∂F (x) consists of only
element – gradient of F : ∂F (x) = {∇F (x)}.

2) Operator ∂F is monotone:

(µ1 − µ2, x1 − x2) > 0 ∀x1, x2 ∈ D(∂F ), ∀µi ∈ ∂F (xi). (1.25)

3) Let F : Rn → R be a convex, proper and lower semicontinuous function
and B be n×m matrix. Then

∂F (Bu) = (BT ◦ ∂F ◦B)(u),

Examples of subdifferentials

1) If F (x) = x+ = max{0, x}, then its subdifferential is so-called Heaviside
function

H(x) =





0 if x < 0;
[0, 1] f x = 0;
1 if x > 0.

Effective set dom F and domain of definition D(∂F ) = D(H) equal to the whole
space R in this example.

2) Indicator function of a convex and closed set K, defined by

IK(x) =

{
0, x ∈ K

+∞, x /∈ K,

is convex, proper and lower semicontinuous. Its subdifferential

∂IK(x) = {µ ∈ Rn : (µ, y − x) 6 0 ∀y ∈ K}, D(∂IK) = dom IK = K.

3) Function F : Rn → R is called separable, if F (x) =
n∑

i=1

Fi(xi), Fi : R→

R. Separable function F is convex, proper and lower semicontinuous if and
only if the same properties have all functions Fi. Effective domain dom F =
domF1 × domF2 × · · · × dom Fn.

Subdifferential of a separable function F is a diagonal operator ∂F = diag(∂F1, ∂F2, . . . , ∂Fn).

In particular, if K =
n∏

i=1

[ai, bi], −∞ 6 ai < bi 6 +∞, then IK =
n∑

i=1

I[ai,bi] is

a separable function and ∂IK = diag(∂I[a1,b1], . . . , ∂I[an,bn]), where

∂I[ai,bi](x) =





(−∞, 0] for x = ai ( if ai > −∞),
0 for ai < x < bi,

[0, +∞) for x = bi ( if bi < +∞).

12



1.3.2 Equivalent formulations of the variational inequalities.

A variational inequality

(∇F (x∗), x− x∗) > 0 ∀x ∈ K, x∗ ∈ K,

with convex closed set of constraints K can be written as

(∇F (x∗), x− x∗) + IK(x)− IK(x∗) > 0 ∀x ∈ Rn, x∗ ∈ Rn,

where IK is indicator function of K.
Thus,

(∇F (x∗), x− x∗) + ϕ(x)− ϕ(x∗) > 0 ∀x ∈ Rn, x∗ ∈ Rn,

with a convex, proper ad lower semicontinuous function ϕ is a general form of
writing both classes of the variational inequalities: with a set of constraints and
with a convex non-differentiable function.

Lemma 1.3. Let F : Rn → R be a convex and differentiable function, while
ϕ : Rn → R be a convex, proper and lower semicontinuous function. Then three
following problems are equivalent:

x∗ = arg min
x∈Rn

{F (x) + ϕ(x)},

x∗ ∈ Rn : (∇F (x∗), x− x∗) + ϕ(x)− ϕ(x∗) > 0 ∀x ∈ Rn,

∇F (x∗) + ∂ϕ(x∗) 3 0.

Proof. The proof of the equivalence for a minimisation problem and correspond-
ing variational inequality is given in Lemma 1.2. Equivalence of the varia-
tional inequality and the inclusion foolows from the definition of the subdiffer-
ential.

Corollary 1.1. If A = AT > 0, then three following problems are equivalent:

x∗ = arg min
x∈Rn

{1
2
(Ax, x, ) + ϕ(x)},

(Ax∗, x− x∗) + ϕ(x)− ϕ(x∗) > 0 ∀x ∈ Rn,

Ax∗ + ∂ϕ(x∗) 3 0.

In case A 6= AT a variational inequality is also equivalent to corresponding
inclusion, while there is now an equivalent to it minimisation problem.
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§2 Iterative methods for variational inequalities
with positive definite matrices

In this section, we consider a variational inequality

(Au, v − u) + ϕ(v)− ϕ(u) > (f, v − u) ∀v ∈ Rn. (2.1)

with a positive definite matrix A ∈ Rn×n.

Theorem 2.1. Let ϕ : Rn → R be a convex, proper and lower semicontinuous
function, and A ∈ Rn×n be a positive definite matrix:

(Ax, x) > m‖x‖2 ∀x ∈ Rn, m > 0.

Then
1) there exists a unique solution of variational inequality (2.1);
2) if u1, u2 are solutions of the variational inequalities

(Aui, v − ui) + ϕ(v)− ϕ(ui) > (fi, v − ui) ∀v ∈ Rn,

then
‖u1 − u2‖ 6 1

m
‖f1 − f2‖.

2.1 One-step stationary method

2.1.1 General convergence result

Below we consider the equivalent to variational inequality (2.1) inclusion

Au + ∂ϕ(u) 3 f, (2.2)

vector u∗ being its unique solution.
One-step stationary iterative method for solving (2.2) reads as

uk+1 − uk

τ
+ Auk + ∂ϕ(uk+1) 3 f, (2.3)

where τ > 0 is an iterative parameter.
The iteration method is correctly defined in the sense, that for any k there

exists a unique solution of (2.3). It follows from Theorem 2.1, applied in the
case A = E — identity matrix.

Note, that an iterative method

uk+1 − uk

τ
+ Auk + ∂ϕ(uk) 3 f

is not correctly defined, because the operator ∂ϕ is multivalued and ∂ϕ(uk) is
generally a set of values.

A calculated iteration uk+1 have to be an argument of the multivalued
operator ∂ϕ (at least, in combination with a known uk). For the case of an
indicator function ϕ = IK this condition can be interpreted, also, as the request
for uk+1 to satisfy the constraints uk+1 ∈ K.
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Remark 2.1. If A = AT > 0 and ϕ = IK is the indicator function of a convex
and closed set K, then variational inequality (2.1) is equivalent to the problem

of minimisation of quadratical function J(u) =
1
2
(Au, u) − (f, u) over the set

K, while iterative method (2.3) is the gradient method with projection applied
to this problem:

uk+1 = PrK

(
uk − τ∇J(uk)

) ≡ PrK

(
uk − τ(Auk − f)

)
. (2.4)

Theorem 2.2. Let mE 6 A = AT 6 M E, m > 0. Then iterative method

(2.3) converges if τ ∈
(

0,
2
M

)
and for any initial guess u0 ∈ Rn. Optimal

iterative parameter is τ0 =
2

M + m
and for τ = τ0 the following estimate for

rate of convergence holds:

‖uk+1 − u∗‖ 6 M −m

M + m
‖uk − u∗‖ ∀k. (2.5)

If A is non-symmetric and

(Au, u) > m‖u‖2, (Au, v) 6 M1/2(Au, u)1/2‖v‖,

then iterative method (2.3) converges if τ ∈
(

0,
2
M

)
and for any initial guess

u0 ∈ Rn. Optimal iterative parameter is τ0 =
1
M

and for τ = τ0

‖uk+1 − u∗‖ 6
(
1− m

M

)1/2‖uk − u∗‖ ∀k. (2.6)

The implementation of method (2.3) is very easy if ∂ϕ is a diagonal operator:

∂ϕ = diag(∂ϕ1, ∂ϕ2, . . . , ∂ϕn),

i. e. if it is the subdifferential of a separable function ϕ(u) =
n∑

i=1

ϕi(ui).

In fact, the implementation of one step of iterative method (2.3) consists of
the multiplication of A by a known vector uk, and of solving the inclusion

(E + τ∂ϕ)y 3 gk = uk + τ(f −Auk).

In the case of a diagonal operator ∂ϕ this inclusion is decomposed into n scalar
(one-dimensional) inclusions

ui + τ∂ϕi(ui) 3 gk
i , (2.7)

or, into n problems to minimise strictly convex, proper and lower semicontinuous
functions

1
2
u2

i + τϕi(ui)− gk
i ui.
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Such problems can be easily solved by the methods of one-dimensional optimi-
sation. Moreover, if the graph of ∂ϕi is a piecewise-linear curve, then problem
(2.7) can be solved directly. Such kind of the variational inequalities we consider
below (cf. Examples 2.1— 2.3).

In the next section the iterative methods for a class of variational inequalities
with non-diagonal operator ∂ϕ will be studied.

2.1.2 Applications to the mesh variational inequalities

Example 2.1. In this example we apply stationary one-step iterative method
(2.3) to the solution of the finite difference scheme for the two-dimensional
obstacle problem (1.14)

y ∈ K : (Ay, z − y) > (f, z − y) ∀z ∈ K, K = {z ∈ Rn : zi > 0 ∀i},

where matrix A corresponds to the mesh Laplace operator with homogeneous
Dirichlet boundary conditions and is given by formula (1.13). As the matrix A
is symmetric, then method (2.3) can be written in the form (2.4):

uk+1 = PrK

(
uk − τ(Auk − f)

)
.

Owing to the structure of K, K = R+ × R+ × · · · × R+, the projection of a
given vector g reduces to projection of every coordinates of g on R+, thus,

(PrKg)i = y+
i ≡ max{yi, 0} for all coordinates yi.

Thus, the implementation of this method is very easy.

Now, let us estimate the rate of convergence of the method. Spectrum of
the mesh operator −∆h with homogeneous Dirichlet boundary conditions is
well-known, namely,

φkl(t) = sin kπt1 sin lπt2, t ∈ ω, k, l = 1, 2, . . . , p, are eigenfunctions, and

λkl = 4h−2

(
sin2 kπh

2
+ sin2 lπh

2

)
are corresponding eigenvalues.

So, m = 8h−2 sin2 πh

2
and M = 8h−2 cos2

πh

2
are, respectively, minimal

and maximal eigenvalues of the matrix A, and its condition number equals to

cond2(A) =
M

m
= O(h−2).

From Theorem 2.2 the optimal iterative parameter is

τ0 =
2

m + M
=

h2

4

and rate of convergence of method (2.3) is characterized by the factor

q =
M −m

M + m
= 1−O(h2)
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in the estimate ‖uk+1 − u∗‖ 6 q‖uk − u∗‖. It means that one needs

n(ε) = O(h−2 ln
1
ε
)

iterations to get the estimate ‖uk − u‖ 6 ε‖u0 − u‖.2
Example 2.2. Consider the finite difference approximation of the obstacle
problem with diffusion-convection operator:

u ∈ K : (Ãu, v − u) > (f, v − u) ∀v ∈ K = {u ∈ Rn : ui > 0 ∀i} (2.8)

with matrix Ã, corresponding to the mesh operator −∆h + ā · ∇h. Matrix
Ã equals to the sum of the matrix A, corresponding to −∆h, and the matrix
L ∈ Rn×n, corresponding to ā · ∇h (see details in Example 1.2).

Obviously, the implementation of (2.3) is similar to the implementation of
the mesh obstacle problem with Laplace operator from previous example. In
fact, the solution of the inclusion

(E + τ∂ϕ)y 3 g

with the diagonal operator

∂ϕ = diag(p, p, . . . , p), where p(t) = {(−∞, 0] for t 6 0, 0 for t > 0}

is equivalent to the projection of the vector g on the set K = R+×R+×· · ·×R+.

Let us estimate the rate of convergence. Symmetric part
1
2

(L + LT ) of

the matrix L corresponds to the mesh operator −h

2
(a1∂̄1∂1 + a2∂̄2∂2). Eigen-

functions of this operator are the same as eigenfunctions of −∆h: φkl(t) =
sin kπt1 sin lπt2, t ∈ ω, and eigenvalues equal to

λkl = 4h−1a1 sin2 kπh

2
+ 4h−1a2 sin2 lπh

2
, k, l = 1, 2, . . . , p.

Because of this

(Ãu, u) > m‖u‖2,
m = λmin(A) + λmin(

1
2

(L + LT )) =

= 8h−2 sin2 πh

2
+ 4h−1(a1 + a2) sin2 πh

2
= O(1).

(2.9)

Further, for u ⇔ uh, v ⇔ vh

(Lu, v) = h2
∑
t∈ωh

ā · ∇huh(t)vh(t) 6
√

2max{a1, a2}
(

h2
∑
t∈ωh

(∂1uh(t))2+
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+(∂2uh(t))2
)1/2

(
h2

∑
t∈ωh

(vh(t))2
)1/2

=
√

2 max{a1, a2}(Au, u)1/2‖v‖.

As, in addition,

(Au, v) 6 λ1/2
max(A)(Au, u)1/2‖v‖ 6 2

√
2h−1(Au, u)1/2‖v‖,

then
(Ãu, v) 6 (2

√
2h−1 +

√
2 max{a1, a2})(Au, u)1/2‖v‖.

Finally,

‖Ãu‖2 6 M(Ãu, u), M = (2
√

2h−1 +
√

2max{a1, a2})2. (2.10)

Estimates (2.9) and (2.10) allow to choose optimal iterative parameter, and with
this parameter

q = (1−m/M)1/2 = 1−O(h2), n(ε) = O(h−2 ln
1
ε
),

as in the previous example.2

Example 2.3. Consider mesh variational inequality from Example 1.5:

u ∈ Rn : (Au, y − u) + ϕ(y)− ϕ(u) > (f, y − u) ∀y ∈ Rn,

where ϕ(u) =
n∑

i=1

αi|ui|, αi > 0, and stiffness matrix A and vector F are defined

by

(Au, v) =
∫

Ω

∇uh(t) · ∇vh(t)dt, (f, v) =
∫

Ω

f(t)vh(t)dt, u ⇔ uh, v ⇔ vh.

Define a symmetric and positive definite matrix D (called as mass matrix in
finite element theory):

(Du, v) =
∫

Ω

uh(t)vh(t)dt, u ⇔ uh, v ⇔ vh.

It is easy to prove the estimate

(Au, u) =
∫

Ω

|∇uh|2dt 6 c1h
−2
min

∫

Ω

u2
hdt = c1h

−2
min(Du, u) ∀u, (2.11)

where hmin is a minimal diameter of all finite elements δ ∈ Th and constant c1

does not depend on meshsize.
From well-known inequality

∫

Ω

u2dt 6 c0

∫

Ω

|∇u|2dt ∀u ∈ H1
0 (Ω), c0 > 0,
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one get the estimate

(Au, u) > c−1
0

∫

Ω

u2
hdt = c−1

0 (Du, u) ∀u (2.12)

with constant c0, independent on meshsize.
Suppose, that the triangulation Th is quasiuniform: there exists a constant

α > 0, such that αh 6 hi 6 h for all i. Then

d0h
2E 6 D 6 d1h

2E, (2.13)

where constants d0 and d1 don’t depend on meshsize.
Estimates (2.11) - (2.13) yield the estimates for the minimal and maximal

eigenvalues of the matrix A:

λmin = O(h2), λmax = O(1),

and condition number of A appears as O(h−2). Due to this, rate of convergence
of method (2.3) with an optimal iterative parameter is asymptotically in h the
same as in previous examples, namely,

q = 1−O(h2), n(ε) = O(h−2 ln
1
ε
).

To implement the method we have to solve inclusion (E + τ∂ϕ)y 3 g with
diagonal operator ∂ϕ = diag(p1, p2, . . . , pn), where

pi(ti) = {−αi for ti < 0; [−αi, αi] for ti = 0; αi for ti > 0}.

It is decomposed into n one-dimensional inclusions ti + pi(ti) 3 gi, the solution
of i-th inclusion is

ti =





gi + ταi for gi < −ταi,

0 for − ταi 6 gi 6 ταi,

gi − ταi for gi > ταi.

2

2.1.3 Numerical example

Let Ω = (0, 1)× (0, 1) be the unit square, and ωh be a unform mesh on Ω̄ with
meshsize h = 1/N . So, ωh contains (N + 1) × (N + 1) grid points. By ∂ω we
denote the set of the boundary grid points, i. e. (ih, jh) for i = 1 or i = N + 1
or j = 1 or j = N + 1. We will write (i, j) ∈ ∂ω.

Hereafter in numerical examples we use double numeration for the compo-
nents of the mesh functions, namely, uij and fij with i, j = 1, 2, . . . , N + 1 for
the mesh functions uh and fh.

Mesh Laplace operator −∆h for the internal points of ωh is defined by

(−∆hu)ij = h−2(−ui−1,j − ui+1,j + 4uij − ui,j−1 − ui,j+1), 2 6 i, j 6 N.
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We consider the obstacle problem:

(−∆hu)ij + p(uij) 3 fij for 2 6 i, j 6 N,

uij = 0 for (i, j) ∈ ∂ω,

where p(t) = {(−∞, 0] for t 6 0, 0 for t > 0}.
One step iterative method (2.3) becomes





uk+1
ij − uk

ij

τ
−∆huk

ij + p(uk+1
ij ) 3 fij for all 2 6 i, j 6 N,

uk+1
ij = 0 for (i, j) ∈ ∂ω.

(2.14)

Recall, that minimal and maximal eigenvalues of this mesh Laplace operator are

m = 8h−2 sin2 πh

2
and M = 8h−2 cos2

πh

2
, so, the optimal iterative parameter

τ0 =
2

m + M
=

h2

4
.

For τ = τ0 formulas in (2.14) transform into

uk+1
ij +

h2

4
p(uk+1

ij ) 3 1
4

(
uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1

)
+

h2

4
fij ,

whence

uk+1
ij = max

{
0,

1
4

(
uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1

)
+

h2

4
fij

}
, 2 6 i, j 6 N.

Algorithm

1. Take an initial guess uij , 1 6 i, j 6 N +1, such that uij = 0 for (i, j) ∈ ∂ω.

2. For i = 2 to N
For j = 2 to N do

v =
1
4

(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) +
h2

4
fi,j

if v < 0, then ûij = 0, else ûij = v.

3. For i = 2 to N
For j = 2 to N do

uij = ûij .

4. If a stopping criterion is fulfilled, then Stop,
otherwise go to n. 2.
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Let exact solution uh of the mesh problem is given by the values in the grid
nodes of the function

u(x, y) =

{
100 y(y − 1)(x− 0.5)(x− 1), (x, y) ∈ (0.5, 1]× [0, 1],
0, (x, y) ∈ [0, 0.5]× [0, 1],

or, u(x, y) = (100 y(y − 1)(x− 0.5)(x− 1))+ (coefficient 100 is taken to make
max u ' 1).

Using the form of writing the variational inequality

(−∆uh)ij + γij = fij , γij ∈ p(uij),

we can easily construct a right-hand side. Namely, let γij = 0 in the grid nodes
(ih, jh) ∈ (0.5, 1) × (0, 1), where uh is positive, while γij be any non-positive
number in the nodes (ih, jh) ∈ (0, 0.5]× (0, 1), where uh = 0. Then γij ∈ p(uij)
and it remains to put

fij = (−∆huh)ij + γij for all 2 6 i, j 6 N.

Numerical experiments were made for

fij = (−∆huh)ij in all grid points,

and for

fi,j =





(−∆huh)ij , x > 0.5
−ui+1,j/h2 x = 0.5,

−1, x < 0.5.

Initial guess was u = 0, stopping criterion ‖u− u∗‖L2 < ε = 0.001, where u∗ is
the exact solution and

‖u‖L2 =
( N∑

i,j=1

h2 u2
ij

)1/2
.

For both cases the results were the same and they are included in Table 1.

N 21 51 101 301
n(ε) 205 1290 5167 46522

n(ε)h2 0.5125 0.516 0.5167 0.5169

Table 1: Number of iterations n(ε) to achieve ‖u− u∗‖L2 < ε = 0.001

We see that number of iterations is of order N2 = h−2, namely n(ε) ' 0.5N2.
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2.2 Preconditioned one-step stationary method

2.2.1 General convergence result

As we saw, one-step iterative method for all considered examples was very easy
to implement but it is very slow convergent.

How to increase the rate of convergence?
From the theory for systems of linear equations it is known that precondi-

tioning is a good approach to do this.
Below we study the following preconditioned one-step stationary method for

variational inequality (2.2):

B
uk+1 − uk

τ
+ Auk + ∂ϕ(uk+1) 3 f. (2.15)

Here preconditioner B is a symmetric and positive definite matrix.

Theorem 2.3. 1) Let A = AT > 0, B = BT > 0 and

α B 6 A 6 β B, α > 0. (2.16)

Then method (2.15) converges for any τ ∈
(

0,
2
β

)
and any u0 ∈ Rn. Optimal

iterative parameter is given by the equality τ0 =
2

α + β
and for τ = τ0 the

following estimate holds:

‖uk+1 − u∗‖B 6 β − α

β + α
‖uk − u∗‖B ∀k.

Hereafter ‖u‖B = (Bu, u)1/2 means so-called energetic norm of the symmetric
and positive definite matrix B.

2) If matrix A is not symmetric and satisfied the following assumptions

(Au, u) > α‖u‖2B , (Au, v) 6 β1/2(Au, u)1/2‖v‖B , α > 0,

for all u, v ∈ Rn, then iterative method (2.15) converges for any τ ∈
(

0,
2
β

)
.

Optimal iterative parameter is τ0 =
1
β

and for τ = τ0 the following estimate

holds:
‖uk+1 − u∗‖B 6 (1− α/β)1/2‖uk − u∗‖B ∀k.

When constructing the preconditioned iterative methods for variational in-
equalities one has to pay attention to the implementation problems. For exam-
ple, in method (2.15) matrix B must be chosen close to A to ensure a good rate
of convergence, but also in a such manner that the operator B + τ∂ϕ is easy to
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invert. The implementation of every iteration of the method (2.15) consists of
the solution of the inclusion

Buk+1 + τ∂ϕ(uk+1) 3 Buk + τ(f −Auk) ≡ gk,

which is equivalent to the variational inequality

(Buk+1, v − uk+1) + τϕ(v)− τϕ(uk+1) > (gk, v − uk+1) ∀v ∈ Rn.

Its solving in case of a matrix B, which is close to A, can be of the same
complexity as solving the initial variational inequality

(Au, v − u) + ϕ(v)− ϕ(u) > (f, v − u) ∀v ∈ Rn.

In all previous examples for implementation of the one-step iterative method
it needs the solution of the inclusion (E + τ∂ϕ)(u) 3 g. This solution reduces
to solving n one-dimensional problems which can be solved directly because
both operators, ∂ϕ and unit matrix E, have diagonal form. The same will be
if we change unit matrix by a diagonal matrix B. From the theory for systems
of linear equations with a matrix A it is well-known, that the best diagonal
preconditioner is the diagonal part of A. If A is a finite difference approximation
of Laplace operator on the uniform grid, then the diagonal part of matrix A is

a scalar matrix (B =
4
h2

E for two-dimensional case). Thus, iterative method

(2.15) with such preconditioner is the same as non-preconditioned method (2.3)
with a scaled iterative parameter and it has the same rate of convergence.

In case of finite element approximation of Laplace equation or in case of
approximation of a differential operator with variable coefficients the choice B
equals to the diagonal part of A is reasonable. But such choice does not improve
the asymptotic in meshsize h rate of convergence.

Situation is much better for the problems in which the number of constraints
is essentially less than the dimension of the discrete problem. Corresponding
example is considered below (Example 2.5).

2.2.2 Applications to the mesh variational inequalities

Example 2.4. Obstacle problem. Finite element approximation.

Consider finite element approximation of the obstacle problem from Example
1.3:

u ∈ K : (Au, v − u) > (f, v − u) ∀v ∈ K, (2.17)

where K = {u ∈ Rn : ui > 0 ∀i} and

(Au, v) =
∫

Ω

∇uh(t) · ∇vh(t)dt, (f, v) =
∫

Ω

f(t)vh(t)dt, u ⇔ uh, v ⇔ vh.

Let us solve (2.17) by preconditioned iterative method (2.15) with a diagonal
preconditioner B. B may be the diagonal part of A or a matrix, constructed
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by application of a simplest quadrature formulae to the integral
∫

Ω

uhvhdx. We

consider the second variant.
Let for any finite element δ ∈ Th the following quadrature formulae is used:

∫

δ

φ(t)dt ≈ Sδ =
mes δ

3

3∑

i=1

φ(ai), where ai are vertices of δ,

and let matrix D̃ is given by

(D̃u, v) =
∑

δ∈Th

Sδ(uhvh), u ⇔ uh, v ⇔ vh.

It is easy to check, that D̃ is a diagonal matrix. Moreover, if D is mass matrix
defined by the equality

(Du, v) =
∫

Ω

uh(t)vh(t)dt, u ⇔ uh, v ⇔ vh,

then
d0D̃ 6 D 6 d1D̃

with constants d0 and d1, independent on meshsize. Last inequalities and esti-
mates (2.11),(2.12) yield

α D̃ 6 A 6 β D̃, α = O(1), β = O(h−2
min).

Thus, the rate of convergence of method (2.15) with the preconditioner B = D̃
is characterized by the factor q = 1− h2

min.2

Example 2.5. Signorini problem.

Let the boundary of a domain Ω ∈ R2 consists of two parts: ∂Ω = ΓD ∪ΓC .
Define the space V = {u ∈ H1(Ω) : u(t) = 0 on ΓD} and the convex set

K = {u ∈ V : u(t) > 0 on ΓC}.
Signorini problem is the following variational inequality: for a given f ∈ L2(Ω)
find u ∈ K, such that

∫

Ω

∇u · ∇(v − u)dt >
∫

Ω

f(t)(v − u)dt ∀v ∈ K. (2.18)

Variational inequality (2.18) has a unique solution which can be characterized
as

−∆u = f in Ω, u = 0 on ΓD,

u > 0,
∂u

∂n
> 0, u

∂u

∂n
= 0 on ΓC ,
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where n is the unit vector of external normal.
Let Ω = (0, 1)× (0, 1), f(t) is continuous in Ω and ΓC = {t ∈ ∂Ω : t1 = 0}.

Approximate (2.18) by a finite-difference scheme. Let

ω̄ = {t = (ih, jh) : 0 6 i, j 6 p + 1, (p + 1)h = 1}

γ is the set of the boundary nodes of ω̄, ω = ω̄ \γ and γC = {t ∈ γ : t1 = 0, 0 <
t2 < 1}, γD = γ \ γC . Define by Vh the space of mesh functions, which vanish
in the nodes of γD. Let also fh be a mesh function such that fh(t) = f(t) for
t ∈ ω.

Finite-difference scheme for (2.18) is

−∆huh = fh in ω,
uh = 0 on γD,

uh > 0, − 1
h

∂2uh − ∂̄1∂1uh > fh, uh (
1
h

∂2uh + ∂̄1∂1uh − fh) = 0 on γC ,

(2.19)
where ∆huh = ∂̄1∂1uh + ∂̄2∂2uh for nodes in ω.

Define the bilinear form

a(uh, vh) =
∑

t∈ω∪γC

(∂1uh(t) ∂1vh(t) + ∂2uh(t) ∂2vh(t))

on Vh × Vh and the linear form fh(vh) =
∑

t∈ωh∪γC

fh(t)vh(t) and the set

Kh = {uh ∈ Vh : uh(t) > 0 ∀t ∈ γC}

in the space Vh. Then finite-difference scheme (2.19) can be written as the
following mesh variational inequality:

uh ∈ Kh : ah(uh, vh − uh) > fh(vh − uh) ∀vh ∈ Kh.

Let now matrix A ∈ Rn×n, n = p(p + 1), and vector f ∈ Rn is defined by

(Au, v) = a(uh, vh), (f, v) = fh(vh) for u ⇔ uh, v ⇔ vh,

with the lexicographical enumeration of the mesh nodes, while K = {u ∈ Rn :
ui > 0 for i = 1, 2, . . . , p}. Them he mesh variational inequality becomes

u ∈ K : (Au, v − u) > (f, v − u) ∀v ∈ K.

Matrix A is symmetric and positive definite, its minimal and maximal eigenval-
ues are m = O(1) and M = O(h−2). Thus, all ”traditional” for the stationary
one-step iterative method convergence results hold, namely,

q = 1−O(h2), n(ε) = O(h−2 ln
1
ε
).

The main feature of Signorini mesh problem :
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the number of the constraints p is much less than the number of
unknowns n.

This gives the possibility to use iterative methods with block-diagonal pre-
conditioners. One such method is constructed below.

Let u = (y, z)T with y = (u1, u2, . . . , up)T , z = (up+1, . . . , un)T , i. e. y
contains the coordinates of the vector u, corresponding to mesh points in γC .
Corresponding to this decomposition of a vector u ∈ Rn are the following block

representations of the matrix A =
(

A11 A12

A21 A22

)
, vector f =

(
f1

f2

)
and operator

∂Ik(u) =
(

P (y)
0

)
, where

P (y) = diag(p(y1), . . . , p(yp)), p(t) = {(−∞, 0] for t = 0, 0 for t > 0}.

Using these notations the mesh variational inequality can be written as the
following inclusion:

(
A11 A12

A21 A22

)(
y
z

)
+

(
P (y)

0

)
3

(
f1

f2

)
. (2.20)

Let us take the preconditioner

B =
(

D11 0
0 A22

)
, D11 = diagA11 ∈ Rp is the diagonal of A11 (2.21)

in iterative method (2.15):

D11
yk+1 − yk

τ
+ A11y

k + A12z
k + P (yk+1) 3 f1, (2.22)

A22
zk+1 − zk

τ
+ A21y

k + A22z
k = f2. (2.23)

Implementation of (2.22) consists of the projection procedure for each coordi-
nate:

yk+1
i = a−1

ii

(
yk

i + hτ(f1
i − (A11y

k + A12z
k)i)

)+
,

while (2.23) is a system of linear equations with symmetric and positive definite
matrix A22. There are a lot of effective methods for solving this system.

Let us estimate the constants of the spectral equivalence of the matrices

A and B. First, note that D11 =
3
h

E is a scalar matrix with the entries
3
h

on the diagonal, and matrix A22 corresponds to the mesh Laplace operator
−∆h defined in the space V 0

h of the mesh functions with homogeneous Dirichlet
conditions on the boundary γ:

(A22u, v) =
∑
t∈ω

(∂1uh(t) ∂1vh(t) + ∂2uh(t) ∂2vh(t))
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for u ⇔ uh, v ⇔ vh, uh, vh ∈ V 0
h . To the decomposition of a vector u ∈ Rn:

u = (y, 0)T + (0, z)T , y ∈ Rp, z ∈ Rp2
, corresponds decomposition of a mesh

function Vh 3 uh ⇔ u: uh = u
(1)
h + u

(2)
h , where u

(2)
h ∈ V 0

h , and u
(1)
h differs of

zero only in the points of γC . Using this fact, for any u ∈ Rn , u ⇔ uh, one has

(Au, u) = ah(uh, uh) 6 2ah(u(1)
h , u

(1)
h ) + 2ah(u(2)

h , u
(2)
h ) =

= 2
∑
t∈γC

(
(∂1u

(1)
h (t))2 + (

1
h

u
(1)
h (t))2

)
+ 2

∑
t∈ω

(
(∂1u

(2)
h (t))2 + (∂2u

(2)
h (t))2

)
6

6 10
h2

∑
t∈γC

(
u

(1)
h (t)

)2

+ 2
∑
t∈ω

(
(∂1u

(2)
h (t))2 + (∂2u

(2)
h (t))2

)
=

=
10
3h

(D11y, y) + 2(A22z, z) 6 10
3h

(Bu, u).

On the other hand, for any function uh ∈ Vh equality−uh(t1, 0) = h

1∑
t2=0

∂2uh(t)

holds. So, ∑
t∈γC

u2
h(t) 6 h

∑
t∈ω∪γC

(∂2u
(2)
h (t))2,

whence (Bu, u) 6 3(Au, u) ∀u ∈ Rn. Finally, we get the following estimates of
the spectral equivalence for matrices A and B:

1
3
B 6 A 6 10

3h
B. (2.24)

It means, that the rate of convergence of the stationary one-step method with
preconditioner B (2.21) is characterized by factor q = 1−O(h) and number of

iterations O(h−1 ln
1
ε
) to achieve accuracy ε.

This asymptotically in h one order better estimate than estimate for non-
preconditioned method.2

2.2.3 Numerical example

We solved Signorini problem, approximating by a finite difference scheme on a
uniform grin in the unit square. The one-sided (Signorini) condition was taken
for y = 0. Preconditioned one-step method was used (as described in Example
2.5).

The exact solution u∗ of the mesh variational inequality was the mesh func-
tion, corresponding to

u(x, y) =

{
100x(1− y)(x− 0.5)y, 0 6 x 6 0.5, 0 6 y 6 1
100(1− x)(x− 0.5)(1− y2), 0.5 < x 6 1, 0 6 y 6 1,
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N 21 51 101 301
n(ε) 57 156 321 984

Table 2: Number of iterations in preconditioned one-step iterative method for
Signorini problem. Initial guess is u0 = 0.

N 21 51 101 301
n(ε) 58 158 325 995

Table 3: Number of iterations in preconditioned one-step iterative method for
Signorini problem. Initial guess is u0 = −1.

and the right-hand side

fij =

{
−(u∗i+1,j + u∗i−1,j − 4u∗ij + 2u∗i,j+1)/h2, j = 0, (y = 0),
−(u∗i−1,j + u∗i+1,j − 4u∗ij + u∗i,j−1 + u∗i,j+1)/h2, otherwise.

Stopping criterion was ‖un − u∗‖L2 < ε = 0.001.

2.3 Relaxation methods

2.3.1 General convergence result.

let A ∈ Rn×n be a symmetric and positive definite matrix, f ∈ Rn and ϕ : Rn →
R be a convex, proper and lower semicontinuous function. We solve inclusion
Au + ∂ϕ(u) 3 f , which is equivalent to the minimization problem

find min
u∈Rn

{J(u) =
1
2
(Au, u) + ϕ(u)− (f, u)}. (2.25)

By u∗ a unique solution of this problem is denoted.
Consider a preconditioned stationary one-step method with a variable pre-

coditioner
Bk(uk+1 − uk) + Auk + ∂ϕ(uk+1) 3 f. (2.26)

Further we suppose that

{Bk} is a bounded sequence of the n× n matrices, (2.27)

Bk − 1
2
A > c0 E, c0 = const > 0. (2.28)

Owing to (2.28), matrix Bk for any k is positive definite, because of this problem
(2.26) has a unique solution for any k (Theorem 2.1).

Theorem 2.4. Let A = AT > 0 and assumptions (2.27), (2.28) are true. Then
iterations (2.26) converge to u∗ for any initial guess u0.
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2.3.2 Jacobi, Gauss-Seidel and SOR-methods

Extrapolated Jacobi method

Let for A = AT > 0 the matrix D = diag(a11, a22, . . . , ann) > 0 be its
diagonal part. Then iterative method

1
σ

D(uk+1 − uk) + Auk + ∂ϕ(uk+1) 3 f, σ > 0,

is the extrapolated Jacobi method. It is a partial case of (2.26), as well as of

the preconditioned method (2.15), with the preconditioner B =
1
σ

D. As

D−1Au = λu ⇒ D−1/2AD−1/2v = λv for v = D1/2u,

then the eigenvalues of matrices D−1A and D−1/2AD−1/2 coincide, so do their
spectral radiuses. The convergence condition (2.28) of Theorem 2.4 reads as

B >
1
2
A, and it is equivalent to the inequality D−1/2AD−1/2 <

2
σ

E, i. e.

λmax(D−1/2AD−1/2) <
2
σ
⇒ σ <

2
ρ(D−1/2AD−1/2)

=
2

ρ(D−1A)
.

The same follows from Theorem 2.3. Moreover, the last theorem gives the
theoretically optimal parameter

σ0 =
2

α + β
, where α = λmin(D−1 A), β = λmax(D−1 A).

Similar results are true for a block Jacobi method, where

D = diag(A11, A22, . . . , Ass), Aii ∈ Rni×ni ,

s∑

i=1

ni = n,

is a block diagonal part of A = AT > 0.

Successive overrelaxation method (SOR-method)

Let the matrix A be decomposed as A = AT = D + L + LT > 0, where D =
diag(a11, a22, . . . , ann) > 0 is its diagonal part or D = diag(A11, A22, . . . , Ass), Aii ∈
Rni×ni is its block diagonal part, while L is strongly lower triangle part of A.

Taking Bk =
1
σk

D+L, σk ∈ [ε, 2−ε], ε > 0 in (2.26), one get SOR-method,

(point variant in case of diagonal D and block variant if at least for one i
the dimension of i-th block ni > 1):

(
1
σk

D + L

)
uk+1 + ∂ϕ(uk+1) 3

(
1
σk

− 1
)

Duk − LT uk + f. (2.29)
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It is easy to see, that for σk ∈ [ε, 2− ε], ε > 0,
(

(Bk − 1
2
A)u, u

)
=

(
1
σk

− 1
2

)
(Du, u) > ε

2 (2− ε)
λmin(Aii)‖u‖2,

where λmin(Aii) is the minimal eigenvalue of Aii > 0. Thus, if σk ∈ [ε, 2 −
ε], ε > 0, then convergence condition (2.28) is fulfilled, and SOR-method (2.29)
converges.

If σk = σ for all k, then (2.28) is true for σ ∈ (0, 2), and SOR-method (2.29)
(

1
σ

D + L

)
uk+1 + ∂ϕ(uk+1) 3

(
1
σ
− 1

)
Duk − LT uk

converges for σ ∈ (0, 2).
Partial case of SOR-method (2.29) is Gauss-Seidel method, corresponding

to choice σ = 1.

How to implement SOR-method (2.29)?
In case of a diagonal operator ∂ϕ the implementation of a point variant of

this method is as simple as for non-preconditioned one-step iterative method.

In fact, on every iterative step of (2.29) one has to solve the inclusion (
1
σk

D +

L)u + ∂ϕ(u) 3 g with a triangle matrix
1
σk

D + L. This inclusion is solved

recurrently. Namely, as lij = 0 for j > i and lij = aij fr j < i, then the
following one-dimensional problems

1
σk

aiiui + ∂ϕi(ui) 3 gi −
∑

j<i

aijuj

are solved sequently for i = 1, 2, . . . , n.

Block variant of method is reasonable to use in case, when the constraints
are imposed not at all coordinates of the vector u, and blocks correspond to the
coordinates without constraints.

For example, let u = (y, z)T , where y = (u1, u2, . . . , up)T , z = (up+1, . . . , un)T ,
and there are no constrains to ui for i = p+1, p+2, . . . , n. Let also the operator
∂ϕ is a diagonal one:

∂ϕ(u) = (∂ϕ1(u1), ∂ϕ2(u2), . . . , ∂ϕp(up), 0, . . . , 0).

For the decomposition u = (y, z)T of u ∈ Rn the following bock representation

of the matrix A =
(

A11 A12

A21 A22

)
corresponds. Choose

D =
(

D11 0
0 A22

)
, D11 = diag(a11, . . . , app).

Then implementation of this block SOR-method consists of sequential solution of
he one-dimensional inclusions for i = 1, 2, . . . , p and a system of linear equations
with matrix A22.
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The described block variant of SOR-method can be used, for example, for
solving mesh Signorini problem (cf. Example 2.5).

Symmetric successive overrelaxation method (SSOR-method).

Let A = D + L + LT = AT > 0, where D = diag(A11, A22, . . . , Ass), Aii ∈
Rni×ni ,

s∑

i=1

ni = n, is a block diagonal part (in particular, diagonal part) of A,

and L is strongly lower triangle part of A. Choosing

Bk =
1
σk

D + L for odd k, Bk =
1
σk

D + LT for even k,

one get (block) SSOR-method
(

1
σk

D + L

)
uk+1/2 + ∂ϕ(uk+1/2) 3

(
1
σk

− 1
)

Duk − LT uk + f,
(

1
σk

D + LT

)
uk+1 + ∂ϕ(uk+1) 3

(
1
σk

− 1
)

Duk+1/2 − Luk+1/2 + f.

This method converges if σk ∈ [ε, 2−ε], ε > 0 and in case of constant relaxation
parameter — if σ ∈ (0, 2).

The implementation of SSOR-method is similar to the implementation of
SOR-method.

2.3.3 Applications to the mesh variational inequalities. Numerical
examples

Once again consider the obstacle problem as in 2.1.3. Let Ω = (0, 1)× (0, 1), ωh

be a unform mesh on Ω with h = 1/N . The mesh obstacle problem is

(−∆uh)ij + γi,j = fij , γij ∈ p(ui,j), for 2 6 i, j 6 N,

uij = 0 for (i, j) ∈ ∂ω,

where p(t) = {(−∞, 0] for t 6 0, 0 for t > 0}.
Let us fix the lexicographical ordering of the grid points. Then the for-

mulas for Gauss-Seidel method read as

uk+1
ij − 1

4
(
uk+1

i−1,j + uk+1
i,j−1

)
+

h2

4
p(uk+1

ij ) 3 1
4

(
uk

i+1,j + uk
i,j+1

)
+

h2

4
fij .

It means, that sequently for i = 2, 3, . . . , N and for j = 2, 3, . . . , N one can
find

uk+1
ij = max

{
0,

1
4

(
uk+1

i−1,j + uk+1
i,j−1 + +uk

i+1,j + uk
i,j+1

)
+

h2

4
fij

}
.

Algorithm for Gauss-Seidel method
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1. Take an initial guess uij , 1 6 i, j 6 N +1, such that uij = 0 for (i, j) ∈ ∂ω.

2. For i = 2 to N
For j = 2 to N do

uij =
1
4

(ui−1,j + ui,j−1 + ui+1,j + ui,j+1) +
h2

4
fij ,

if uij < 0, then uij = 0.

3. If a stopping criterion is fulfilled, then Stop,
otherwise go to n. 2.

For the same lexicographical ordering of the grid points the formulas for
SOR-method are

1
σ

uk+1
ij −1

4
(
uk+1

i−1,j + uk+1
i,j−1

)
+

h2

4
p(uk+1

ij ) 3
(

1
σ
− 1

)
uk

ij+
1
4

(
uk

i+1,j + uk
i,j+1

)
+

h2

4
fij .

It means, that sequently for i = 2, 3, . . . , N and for j = 2, 3, . . . , N one can
find

uk+1
ij = max

{
0, (1− σ)uk

ij +
σ

4
(
uk+1

i−1,j + uk+1
i,j−1 + uk

i+1,j + uk
i,j+1

)
+

σh2

4
fij

}

sequently for all i = 2, 3, . . . , N and for i = 2, 3, . . . , N .
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Algorithm for SOR-method

1. Take an initial guess uij , 1 6 i, j 6 N +1, such that uij = 0 for (i, j) ∈ ∂ω.

2. For i = 2 to N
For j = 2 to N do

uij = (1− σ)uk
ij +

σ

4
(
uk+1

i−1,j + uk+1
i,j−1 + uk

i+1,j + uk
i,j+1

)
+

σh2

4
fij ,

if uij < 0, then uij = 0.

3. If a stopping criterion is fulfilled, then Stop,
otherwise go to n. 2.

SSOR-metod differs from SOR-method by the presence of iterations with
relaxation on the inverse order. Thus:

Algorithm for SSOR-method

1. Take an initial guess uij , 1 6 i, j 6 N +1, such that uij = 0 for (i, j) ∈ ∂ω.

2. For i = 2 to N
For j = 2 to N do

uij = (1− σ)uk
ij +

σ

4
(
uk+1

i−1,j + uk+1
i,j−1 + uk

i+1,j + uk
i,j+1

)
+

σh2

4
fij ,

if uij < 0, then uij = 0.

3. For i = N down to 2
For j = N down to 2 do

uij = (1− σ)uk
ij +

σ

4
(
uk+1

i−1,j + uk+1
i,j−1 + uk

i+1,j + uk
i,j+1

)
+

σh2

4
fij ,

if uij < 0, then uij = 0.

4. If a stopping criterion is fulfilled, then Stop,
otherwise go to n. 2.

Let the exact solution uh of the mesh problem be given as before by the val-
ues in the grid nodes of the function u(x, y) = (100 y(y − 1)(x− 0.5)(x− 1))+.
Numerical experiments were made for

fi,j =





(−∆huh)ij , x > 0.5
−ui+1,j/h2 x = 0.5,

−1, x < 0.5.

Initial guess was u = 0, stopping criterion ‖u− u∗‖L2 < ε = 0.001.
Table 4 contains the comparison results for Jacobi method, Gauss-Seidel

method and SOR-method with (numerically found) optimal relaxation param-
eter σ0.
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N 21 51 101 301 501
n(ε) for Jacobi method 205 1290 5167 46522 too many

n(ε) for Gauss-Seidel method 103 645 2584 23261 64616
n(ε) for SOR-method 20 60 111 270 521

optimal σ0 1.7 1.8 1.9 1.97 1.98

Table 4: Number of iterations n(ε) to achieve ‖u− u∗‖L2 < ε = 0.001

Remark 2.2. For SOR-method applied to solving a system of linear equations
Au = f with a symmetric and positive definite matrix A there is a theory of
choosing the optimal relaxation parameter σ. This theory uses the properties
of the matrix A, and optimal parameter is defined by these properties. SOR-
method with the optimal parameter (for mesh problems it is σ, close to 2,)
has a rate of convergence, which is essntially better than, for example, a rate of
convergence for Gauss-Seidel method (σ = 1). For example, for solving a system
of equations with the matrix A, corresponding to mesh Laplace operator, the
rate of convergence for SOR-method with the optimal parameter (σ ' 2−O(h)
for h → 0), is characterised by a factor q = 1 − O(h) instead of q = 1 − O(h2)
as for Gauss-Seidel method.

For the mesh variational inequalities there is no similar theory. 2

Below we give the results of numerical experiments, which purpose was to
find the optimal relaxation parameters for different meshes, and compare them
with the known optimal relaxation parameters for linear case.

For a matrix, corresponding to the mesh Laplace operator on the uniform
grid with meshsize h the theoretically optimal relaxation parameter in SOR-
method applied to the system of linear equations is

σ∗ = 2/(1 + sin(πh)).

In the following tables we give the number of SOR-iterations n(ε) for different
grids and different relaxation parameters. Initial guess is u0

ij = 0, and stopping
criterion is ‖u− u∗‖L2 < ε = 0.001.
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N = 21
σ 1.5 σ0 = 1.6 1.7 σ∗=1.74 1.8 1.9

n(ε) 31 20 30 29 29 48
n(ε)h 1.0 1.45

N = 51
σ 1.5 1.6 1.7 σ0 = 1.8 σ∗=1.88 1.9

n(ε) 212 157 108 60 75 73
n(ε)h 1.2 1.5

N = 101
σ 1.7 1.8 σ0 = 1.9 σ∗=1.94 1.95

n(ε) 450 278 111 151 147
n(ε)h 1.11 1.51

N = 301
σ 1.9 1.95 1.96 σ0 = 1.97 σ∗=1.97934 1.98

n(ε) 1205 555 418 270 454 451
n(ε)h 0.9 1.513

N = 501
σ 1.97 σ0 = 1.98 σ∗=1.98754 1.99

n(ε) 914 521 757 737
n(ε)h 1.042 1.514

Table 5: Number of iterations to achieve ‖u− u∗‖L2 < ε = 0.001. Comparison
results for different relaxation parameters.

In the next table we collect for all meshes the following results: optimal for
linear case relaxation parameter σ∗, experimentally founded optimal parameter
σ0 for the obstacle problem, dependence of the number of iterations upon the
meshsize h.

N 21 51 101 301 501
σ∗ 1.74 1.88 1.94 1.97934 1.98754

n(ε)h 1.45 1.5 1.51 1.513 1.514

σ0 1.6 1.8 1.98 1.97 1.98
n(ε)h 1.0 1.2 1.11 0.9 1.042

Table 6: Dependence of iterations number upon meshsize h.

One more numerical test was made for the obstacle problem, which free
boundary consists of many lines and is not smooth.

Namely, let the exact solution of the obstacle problem be

uij = (sin(6πih) sin(6πjh))+

and the right-hand side be chosen as

fij =

{
−1, if uij < 0;
−(∆hu)ij , , otherwise .
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Table 7 contain the results for the initial guess u0
ij = 1 and optimal relaxation

parameter σ0, which was found experimentally for every mesh.

N 21 51 101 301 501
σ0 1.7 1.9 1.94 1.98 1.99

n(ε) 37 84 147 361 588
n(ε)h 1.85 1.68 1.47 1.2 1.176

Table 7: Number of iterations to achieve ‖u− u∗‖L2 < ε = 0.001. Dependence
of iterations number upon meshsize h.

Conclusions:
1) The optimal parameter σ0 in SOR-method, applied to the mesh obstacle

problem Au + ∂ϕ(u) 3 f , was close to the optimal parameter σ∗ for the system
of linear equations Au = f with the same matrix A. Moreover,

smaller meshsize h ⇒ closer σ0 to σ∗.
2) The number of SOR-iterations with both relaxation parameters σ0 and

σ∗ was proportional to N = 1/h.
These conclusions, made on the basis of several numerical tests, are really

true for a wide class of variational inequalities.

Remark 2.3. In general, it is not possible to compute a priori the optimal
value of the relaxation parameter σ. Frequently, for the systems Au = f of
linear mesh equations the following heuristic estimate is used:

σ∗ ' 2− ch, c = const.

In our numerical examples the optimal relaxation parameter for linear case is
known and it just satisfies this estimate:

σ∗ = 2/(1 + sin(πh)) ' 2− 2πh.

2

Let us look what happens when solving a variational inequality. In the
tables below the result for the theoretically optimal (for corresponding matrix A)
parameter σ∗ and for experimentally found optimal (for variational inequality)
parameter σ0 are collected. First table contains the results for the obstacle
problem with exact solution u(x, y) = (100 y(y − 1)(x− 0.5)(x− 1))+ and the
second one — with exact solution u(x, y) = (sin(6πx) sin(6πy))+.
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N 21 51 101 301 501
σ∗ 1.74 1.88 1.94 1.97934 1.98754

(2− σ∗)/h 5.2 6.0 6.0 6.198 6.23

σ0 1.6 1.8 1.9 1.97 1.98
(2− σ0)/h 8 10 10 9 10

Table 8: Optimal parameters and constant c in the formula σ = 2− ch. Exact
solution u(x, y) = (100 y(y − 1)(x− 0.5)(x− 1))+

N 21 51 101 301 501
σ0 1.7 1.9 1.94 1.98 1.99

(2− σ0)/h 6 5 6 6 5

Table 9: Optimal parameter and constant c in the formula σ = 2 − ch. Exact
solution u(x, y) = (sin(6πx) sin(6πy))+

From calculating results one can see that for optimal parameter σ0 the de-
pendence σ0 = 2− c0h is also true.

This fact motivates the using of the following method to find a relaxation
parameter, which is close to the optimal σ0:

1) Find an optimal parameter σ0 by numerical tests on a coarse grid with
meshsize h0.

2) Take c =
2− σ0

h0
for calculating the relaxation parameter for a fine grid

with meshsize h: σ = 2− ch.
Note, that this method can be applied in the case of the uniform grids (or,

at least, quasiuniform grids).

2.4 Error control and stopping criteria

2.4.1 Generalities

Error control and stopping criteria are very important aspects of the implemen-
tation of numerical methods. To control exactness of an iterative method when
solving a mesh variational inequality there a several approaches.

First, if a rate of convergence is known:

‖uk+1 − u∗‖s 6 q ‖uk − u∗‖s ∀k, q < 1,

for a vector norm ‖.‖s, then one can estimate the norm of error ‖uk − u∗‖s by
the norm of the difference of two current iterations ‖uk+1 − uk‖s. Namely,

‖uk+1 − uk‖s > ‖uk − u∗‖s − ‖uk+1 − u∗‖s > (1− q)‖uk − u∗‖s,

whence
‖uk − u∗‖s 6 1

1− q
‖uk+1 − uk‖s. (2.30)
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The most universal method for error controlling is the estimating of a norm
of a residual vector.

What is the residual vector for an iterative method, applied to solution of a
variational inequality?

Let us consider iterative method (2.15). When implementing this method,
the following inclusion is solved:

Buk+1 + τ∂ϕ(uk+1) 3 Buk + τ(f −Auk) ≡ gk.

From this inclusion one can find not only uk+1, but also

γk+1 =
1
τ

B(uk − uk+1) + f −Auk ∈ ∂ϕ(uk+1).

By residual vector we call the vector rk+1 = Auk+1 + γk+1 − f .
The inclusion Au + ∂ϕ(u) 3 f , which we solve by iterative method (2.15),

can be written as
Au + γ = f, γ ∈ ∂ϕ(u).

If (u∗, γ∗) is its solution, then rk+1 = A(uk+1 − u∗) + (γk+1 − γ∗). As matrix
A is positive definite: (Au, u) > m‖u‖2, and operator ∂ϕ is monotone, then

(rk+1, uk+1−u∗) > (A(uk+1−u∗), uk+1−u∗) = ‖uk+1−u∗‖2A > m‖uk+1−u∗‖2,

and from the estimate for norm of residual ‖rk+1‖ we have the following error
estimates:

‖uk+1 − u∗‖ 6 m−1‖rk+1‖,
‖uk+1 − u∗‖A 6 ‖rk+1‖A−1 6 m−1/2‖rk+1‖.

Let us underline, that no information about the rate of convergence for an
iterative method is needed to get these error estimates.

2.4.2 Numerical example

First, two different stopping criteria were used, namely, ‖r‖L2 < ε = 0.001 and
‖r‖C < ε = 0.001 for solving the obstacle problem by SOR-method. Here ‖r‖C

is the maximum norm for residual vector. Number of iterations are denoted,
respectively, by nr(ε)(L2) for the first criterion and by nr(ε)(C) for the second
one. We includes in the table the number of iterations to achieve the accuracy
‖u−u∗‖L2 < ε = 0.001, where u∗ is the exact solution. Initial guess was u = 0.

The results are included in Table 10.
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N = 51

σ 1.5 1.6 1.7 σ0 = 1.8 σ∗=1.88 1.9
nr(ε)(L2) 343 255 175 97 110 117
nr(ε)(C) 377 280 192 107 120 141

n(ε) 212 157 108 60 75 73

N = 101

σ 1.7 1.8 σ0 = 1.9 σ∗=1.94 1.95
nr(ε)(L2) 727 449 176 222 255
nr(ε)(C) 800 494 195 243 294

n(ε) 450 278 111 151 147

N = 301

σ 1.9 1.95 1.96 σ0 = 1.97 σ∗=1.97934 1.98
nr(ε)(L2) 1945 896 672 599 671 668
nr(ε)(C) 2142 988 742 670 762 838

n(ε) 1205 555 418 270 454 451

Table 10: Number of iterations, when stopping criteria are norms of the residual.

N 21 51 101 301
n(ε) 373 2220 8735 77747

‖uk+1 − uk‖L2/(1− q) 0.00098 0.00099 0.00099 0.00099
‖uk − u∗‖L2 0.00051 0.00046 0.00042 0.00041

‖r‖L2 0.01005 0.01004 0.00995 0.00990
q 0.98769 0.99803 0.99951 0.99995

Table 11: Comparison results for different stopping criteria.

The same mesh obstacle problem was solved by Jacobi method, which co-
incides for this problem with preconditioned one-step stationary method, the
preconditioner being the diagonal part of the matrix A, corresponding to mesh
Laplace operator for uniform grid. For this method the following estimate is
valid:

‖uk+1 − u∗‖L2 6 q‖uk − u ∗ ‖L2

with
q =

M −m

M + m
, m =

8
h2

sin2 πh

2
, M =

8
h2

cos2
πh

2
.

Thus,

‖uk − u∗‖L2 6 1
1− q

‖uk+1 − uk‖L2 .

We used the criterion
‖uk+1 − uk‖L2

1− q
< ε = 0.001. Initial guess was u0 = 1.

Table 11 contains the calculated results.

These results ensure that one can use to control the error of the iterations
either the norm of the difference of two current iterations (if the rate of conver-
gence is known) or a norm of the residual vector. The last estimate is the most
universal one.

39



2.5 Splitting iterative methods

2.5.1 General convergence theory

We will solve inclusion (2.2)

Au + ∂ϕ(u) 3 f

with a positive definite matrix A by the following iterative method:

DB
uk+1 − uk

τ
+ Auk + ∂ϕ(B(uk+1 − uk) + uk) 3 f, (2.31)

where B is a regular matrix (i. e. exists B−1), D is a symmetric and positive
definite matrix, and τ > 0 is an iterative parameter.

Inclusion (2.31) is equivalent to the system

D
uk+1/2 − uk

τ
+ Auk + ∂ϕ(uk+1/2) 3 f, (2.32)

B(uk+1 − uk) = uk+1/2 − uk, (2.33)

whence the name ”splitting” for the method.
The partial cases of (2.31) are generalised Peacemen-Rachford and Douglas-

Rachford methods:
Peacemen-Rachford method (B =

1
2
(E + τA) in (2.31))





D
uk+1/2 − uk

τ
+ Auk + ∂ϕ(uk+1/2) 3 f,

uk+1 − 2uk+1/2 + uk

τ
+ A(uk+1 − uk) = 0;

(2.34)

Douglas-Rachford method (B = E + τA in (2.31))




D
uk+1/2 − uk

τ
+ Auk + ∂ϕ(uk+1/2) 3 f,

uk+1 − uk+1/2

τ
+ A(uk+1 − uk) = 0.

(2.35)

As we see, the first step (2.32) of method (2.31) coincides with the pre-
conditioned one-step method, while the second step (2.33) can be viewed as a
refinement of the iteration uk+1/2.

The implementation of method (2.31) consists of the implementation of step
(2.32), i. e. the preconditioned one-step method, which have been discussed
before, and of solving system of linear equations (2.33).

Below the convergence results for the generalised Peacemen-Rachford and
Douglas-Rachford methods in cases of symmetric and nonsymmetric matrix A
are cited.
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Theorem 2.5. Let

mD 6 A = AT 6 MD, m > 0. (2.36)

Then iterative methods (2.34) and (2.35) converge for any initial guess u0 and
any iterative parameter τ > 0.

Optimal iterative parameter is τ0 =
1√
mM

and for τ = τ0 the following

estimates for rate of convergence are valid:

‖(E + τ0D
−1A)zk+1‖D 6

√
M −√m√
M +

√
m
‖(E + τ0D

−1A)zk‖D

for method (2.34) and

‖(E + τ0D
−1A)zk+1‖D 6

√
M√

M +
√

m
‖(E + τ0D

−1A)zk‖D

for method (2.35).

Theorem 2.6. Let

(Au, u) > δ‖u‖2D, δ > 0, (D−1Au, Au) 6 ∆(Au, u) ∀u ∈ Rn.

Then iterative methods (2.34) and (2.35) converge for any initial guess u0 and
any iterative parameter τ > 0.

Optimal iterative parameter is τ0 =
1√
∆ δ

and for τ = τ0 the following

estimates for rate of convergence are valid:

‖(E + τ0D
−1A)zk+1‖D 6 q1/2‖(E + τ0D

−1A)zk‖D, (2.37)

where q = q0 =
√

∆−
√

δ√
∆ +

√
δ

for method (2.34) and q =
1
2

+
q0

2
for method (2.35).

2.5.2 Applications to mesh variational inequalities

Splitting iterative methods can be applied to all mesh variational inequalities,
considered in Examples 2.1 — 2.5, because matrices of these variational inequal-
ities are positive definite.

The implementation of the non-preconditioned Peacemen-Rachford and Douglas-
Rachford methods are similar to the implementation of non-preconditioned one-
step iterative methods.

Now, let us estimate the rate of convergence. As was proved, the condition
number cond(A) of a matrix A in any of the cited examples is O(h−2). So, for
the optimal iterative parameter τ0 the factor

q =
√

M −√m√
M +

√
m

=

√
cond(A)− 1√
cond(A) + 1

= 1−O(h).
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It means, that non-preconditioned Peacemen-Rachford and Douglas-Rachford
methods, applied to the mesh variational inequalities of Examples 2.1 — 2.5
request

n(ε) = O(h−1 ln
1
ε
)

iterations to get the estimate ‖uk − u‖ 6 ε‖u0 − u‖. 2

For the Signorini problem is possible to use the preconditioned methods.
Namely, let u = (y, z)T with y = (u1, u2, . . . , up)T , z = (up+1, . . . , un)T , i. e. y
contains the coordinates of the vector u, corresponding to mesh points in γC .
Corresponding to this decomposition of a vector u ∈ Rn are the following block

representations of the matrix A =
(

A11 A12

A21 A22

)
, vector f =

(
f1

f2

)
and operator

∂Ik(u) =
(

P (y)
0

)
, where

P (y) = diag(p(y1), . . . , p(yp)), p(t) = {(−∞, 0] for t = 0, 0 for t > 0}.

Let us take the preconditioner

B =
(

D11 0
0 A22

)
, D11 = diagA11 ∈ Rp is the diagonal of A11

in iterative method (2.35):




D11
yk+1/2 − yk

τ
+ A11y

k + A12z
k + P (yk+1) 3 f1,

A22
zk+1/2 − zk

τ
+ A21y

k + A22z
k = f2.

uk+1 − uk+1/2

τ
+ A(uk+1 − uk) = 0.

(2.38)

Implementation of (2.38) consists of the projection procedure:

yk+1
i = a−1

ii

(
yk

i + hτ(f1
i − (A11y

k + A12z
k)i)

)+
,

and the solution of the systems of linear equations.

Further, in Example 2.5 we have estimated the constants of the spectral
equivalence of the matrices A and D (here we use notation D for the precondi-
tioner):

1
3
D 6 A 6 10

3h
D ⇒ M =

10
3h

, m =
1
3
.

Thus, for the optimal iterative parameter τ0 the factor

q = q0 =
√

M −√m√
M +

√
m

= 1−O(h1/2)
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and number of iterations to get the estimate ‖uk − u‖ 6 ε‖u0 − u‖ equals to

n(ε) = O(h−1/2 ln
1
ε
)

2

2.5.3 Numerical example

We consider once again the obstacle problem with exact solution u(x, y) =
(100 y(y − 1)(x− 0.5)(x− 1))+ and right-hand side

fi,j =





−(∆u)ij , x > 0.5
−ui+1,j/h2 x = 0.5,

f = −1, x < 0.5.

The mesh variational inequality is solved by Douglas-Rachford method with the
optimal iterative parameter.

Initial guess u = 0, stopping criterion ‖u− u∗‖L2 < ε = 0.001.

N 21 51 101 301 501
n(ε) 20 46 94 283 472
‖r‖L2 0.0003 0.02 0.02 0.03 0.03

n(ε) for SOR-method
with optimal parameter 20 60 111 270 521

Table 12: Number of iterations to achieve ‖u − u∗‖L2 < 0.001 and norm of
residual for Douglas-Rachford method. Comparison with SOR-method

We see, that for Douglas-Rachford method with optimal iterative parameter
n(ε) ' N , i. e. is proportional to h−1 as it was proved theoretically. The
number of iterations is almost the same as in SOR-method with experimentally
defined optimal relaxation parameter.

Deficiency of splitting iterative methods is the necessity to solve a sys-
tem of linear equations at every iteration. It leads to more time consuming in
comparison with SOR-method.

Merits:
1) Splitting iterative methods converge for any iterative parameter

τ > 0 and for optimal iterative parameter have asymptotically the same rate
of convergence as SOR-method with the optimal relaxation parameter. An
optimal parameter τ > 0 can be defined a priori by the matrix properties.
Experimentally defined optimal parameter (so, really optimal) almost coincides
with the theoretical one. The rate of convergence is not very sensible to the
choice of an iterative parameter.

2) Splitting iterative methods can be applied to problems with nonsym-
metric positive definite matrices A and they have in this case asymptotically
the same rate of convergence as for the symmetric case.

3) Splitting iterative methods converges also in the case of a positive semidef-
inite matrix A, as well as in the case of a non-linear monotone operator A.
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§3 Variational inequalities with saddle matrices

3.1 Problem formulation, generalities

Example 3.1. Let us consider the minimization problem for the functional

J(u) =
1
2

1∫

0

u′ 2(t)dt−
1∫

0

b(t)u(t)dt, b(t) ∈ C[0, 1],

on the set {u(t) ∈ H1
0 (0, 1) : |u′(t)| 6 1 for t ∈ (0, 1)}. Let {ti = i h, i =

0, . . . , n + 1; (n + 1) h = 1} be a uniform grid with meshsize h > 0 on the
segment [0, 1], ui = u(ti)(u0 = un+1 = 0) and bi = b(ti). Finite difference
scheme for the problem under consideration is

u∗ = arg min
u∈K

F (u) =
1
2

(
u2

1

h2
+

n−1∑

i=1

(
ui+1 − ui

h

)2

+
u2

n

h2

)
−

n∑

i=1

biui, (3.1)

where K =
{ |ui − ui−1|

h
6 1 ∀i = 1, . . . , n + 1

}
is a convex and closed set.

This problem is equivalent to the variational inequality

(Au, v − u) > (b, v − u) ∀v ∈ K (3.2)

with matrix

A = LT L, L = h−1




1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 1
0 0 0 . . . 0 −1



∈ R(n+1)×n.

As we know from the previous examples, matrix A is symmetric and positive
definite, its spectrum is also known. Thus, all results on the convergence and
rate of convergence of the considered above iterative methods are still valid.

However, when implementing all these (non-preconditioned) iterative meth-
ods we have to solve an inclusion, which reduces to the projection on the set

K. And the projection on the set K =
{ |ui − ui−1|

h
6 1 ∀i = 1, . . . , n + 1

}
,

in contrast to all previous examples, is the problem, which can not be solved
directly.

Let us discuss this problem in more details. The projection of a given vector
g on a closed convex set K is a minimum of ‖u− g‖2 over K, that is equivalent
to solution of the variational inequality

(u, v − u) > (g, v − u) ∀v ∈ K,
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or, to solution of the inclusion

u + ∂IK(u) 3 g. (3.3)

Let θ(p) be the indicator function of the set {p ∈ R(n+1) : |pi| 6 1 ∀i}, then

∂IK(u) = LT ◦ ∂θ ◦ L(u),

with diagonal operator ∂θ, and inclusion (3.3) becomes

u + LT ◦ ∂θ ◦ L(u) 3 g.

The solution of this inclusion is a problem of almost the same complexity, as
the solution of the initial variational inequality (3.2), which can be equivalently
written in the form of the inclusion

Au + LT ◦ ∂θ ◦ L(u) 3 b.

2

How to solve problem (3.1)?

The most reasonable approach is to use Lagrange multipliers method.
Using the introduced notations we write problem (3.1) in the form: find

minimum of the function

1
2
‖Lu‖2 − (b, u) + θ(Lu), u ∈ Rn. (3.4)

Let us define a new vector p = Lu, then (3.4) is equivalent to

min
Lu=p

(
1
2
‖p‖2 − (b, u) + θ(p)

)
.

We will solve this problem by Lagrange multipliers method. Namely, let La-
grange function be defined as

L(u, p, λ) =
1
2
‖p‖2 − (b, u) + θ(p) + (Lu− p, λ).

Then saddle point of L is a triple (u, p, λ), satisfying the system

∂L
∂u

(u, p, λ) = 0 ⇔ LT λ = b,

∂pL(u, p, λ) 3 0 ⇔ p + ∂θ(p)− λ 3 0,

∂L
∂λ

(u, p, λ) = 0 ⇔ Lu = p.

(3.5)

It is well-known, that if there exists saddle point (u, p, λ) of Lagrange function
L, when u is a solution of (3.4) and p = Lu.
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System (3.5) can be written as



0 0 LT

0 E −E
L −E 0







u
p
λ


 +




0
∂θ(p)

0


 3




b
0
0


 , (3.6)

where E is the unit (n + 1)× (n + 1) matrix. Using the notations

Ã =




0 0 LT

0 E −E
L −E 0


 , P̃ =




0 0 0
0 ∂θ 0
0 0 0


 , ũ =




u
p
λ


 , b̃ =




0
b
0


 ,

we can write (3.6) in ”traditional” form

Ãũ + P̃ (ũ) 3 b̃.

Now operator P̃ is diagonal, matrix Ã is symmetric. But it is not definite
positive, it has both positive and negative eigenvalues. Such kind of matrices
we will call ”saddle matrices”.

If we change the sign in the last equation of system (3.6), then it becomes



0 0 LT

0 E −E
−L E 0







u
p
λ


 +




0
∂θ(p)

0


 3




b
0
0


 . (3.7)

The matrix

A =




0 0 LT

0 E −E
L −E 0




of the system (3.7) is not symmetric, but it is positive semidefinite:

(Aũ, ũ) = ‖p‖2 > 0.

Below we will use both equivalent writing of the problem, (3.6) and (3.7),
when constructing the iterative solution methods.

Now, let

A =
(

0 0
0 E

)
, B =

(−L E
)
, ∂ϕ =

(
0 0
0 ∂θ

)
, f =

(
b
0

)
.

Then system (3.6) reads as
(

A −BT

−B 0

) (
u
λ

)
+

(
∂ϕ(u)

0

)
3

(
f
0

)
.

Theorem 3.1. Let ϕ be a convex, proper and lower semicontinuous function,

B ∈ Rs×n, s 6 n, is a matrix of full rank: rank B = s, (3.8)
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{u ∈ Rn : Bu = g} ∩ int dom ϕ 6= ∅ (3.9)

and of the following assumptions holds:

(Au, u) > m‖u‖2 ∀u ∈ Rn, m > 0, or

A = AT > 0 and (Au, u) > m‖u‖2 ∀u ∈ KerB, m > 0.

Then problem (
A −BT

−B 0

) (
u
λ

)
+

(
∂ϕ(u)

0

)
3

(
f
−g

)
(3.10)

has a solution (u∗, λ∗), and its first component u∗ is unique.

Further we denote by X = {(u, λ)} the set of the solutions of (3.10).

3.2 Stationary one-step iterative methods.

3.2.1 Uzawa-type method

Let A be positive definite, then inclusion Au + ∂ϕ(u) 3 f has a unique solution
and from the first equation in (3.10) we find u:

u = (A + ∂ϕ)−1(BT λ + f),

therefore λ satisfies equation

B ◦ (A + ∂ϕ)−1(BT λ + f) = g. (3.11)

Consider iterative method for solving (3.11):

1
τ

D(λk+1 − λk) + B ◦ (A + ∂ϕ)−1(BT λk + f) = g, (3.12)

where D is a symmetric and positive definite matrix.
Its implementation consists of the sequential solution of the following prob-

lems:
Auk + ∂ϕ(uk) 3 BT λk + f, (3.13)

Dλk+1 = Dλk + τ(g −Buk). (3.14)

Theorem 3.2. Let assumptions (3.8), (3.9) be fulfilled and matrix A is positive
definite: (Au, u) > m‖u‖2. Then for

D = DT >
τ

2m
BBT (3.15)

iterative method (3.12) converges in the sense that (uk, λk) → (u∗, λ∗) ∈ X.
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Remark 3.1. In case A = AT and for D = E method (3.13), (3.14) coincides
with Uzawa method for finding a saddle point of Lagrange function, correspond-
ing to problem (3.10):

L(u, λ) =
1
2
(Au, u) + ϕ(u)− (Bu, λ)− ψ(λ).

Uzawa method is the gradient method for finding max
λ

min
u
L(u, λ), and it

is as follows. For a known λk find uk as a minimum of L(u, λk) (coincides
with (3.13)), then execute one step of gradient method for finding max

λ
L(uk, λ)

(coincides with (3.14)).

The main deficiency of method (3.12) is that at every iteration one needs
to solve inclusion (3.13) when implementing. This inclusion (or variational
inequality) with matrix A can be of great complexity in solution.

To avoid this deficiency we consider so-called Arrow-Hurwicz-type methods.

3.2.2 Arrow-Hurwicz-type methods

Consider the following iterative method for solving problem (3.10):

1
τ

Du(uk+1 − uk) + Auk −BT λk + ∂ϕ(uk+1) 3 f,

1
τ

Dλ(λk+1 − λk) + Buk+1 = g
(3.16)

with positive definite and symmetric matrices Du and Dλ.

Theorem 3.3. Let assumptions (3.8), (3.9) be fulfilled and matrix A be positive
definite: (Au, u) > m‖u‖2. Let further Du and Dλ be symmetric and positive
definite matrices, and

(Au, v) 6 M1/2(Av, v)1/2‖u||Du ∀u, v ∈ Rn. (3.17)

then for

τ <
2m

mM + ‖B‖2∗
, ‖B‖∗ = sup

u 6=0,λ 6=0

(Bu, λ)
‖u‖Du‖λ‖Dλ

(3.18)

iterations (uk, λk) of method (3.16) converge to a solution (u∗, λ∗) of problem
(3.10).

3.2.3 Applications to the mesh variational inequalities

Example 3.2. Go back to problem (3.4) from Example 3.1. Recall, it is the
problem to minimize the function

1
2
‖Lu‖2 − (b, u) + θ(Lu), u ∈ Rn.
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After introducing an artificial constraint Lu = p it transforms to minimization
problem

min
Lu=p

(
1
2
‖p‖2 − (b, u) + θ(p)

)
,

which by using Lagrange multipliers method becomes the problem for finding
saddle-point of the Lagrange function

L(u, p, λ) =
1
2
‖p‖2 − (b, u) + θ(p) + (Lu− p, λ).

Its saddle-point is a triple (u, p, λ, satisfying the system



0 0 LT

0 E −E
L −E 0







u
p
λ


 +




0
∂θ(p)

0


 3




b
0
0


 . (3.19)

So, it is a partial case of problem (3.10) with

A =
(

0 0
0 E

)
, B =

(−L E
)
, ∂ϕ =

(
0 0
0 ∂θ

)
, f =

(
b
0

)
.

In our case matrix A is degenerate. Because of this we can not use Uzawa-type
method (3.12) for its solution.

To avoid this deficiency of matrix A, we will do several identical trans-
formations of (3.19). Namely, let us add to the first equation the third one,
multiplying by rLT with a positive constant r, and add to the second inclusion
the third one, multiplying by r. As a result we get the system




rLT L −rLT LT

−rL (1 + r)E −E
L −E 0







u
p
λ


 +




0
∂θ(p)

0


 3




b
0
0


 . (3.20)

Now matrix

A =
(

rLT L −rLT

−rL (1 + r)E

)

is positive definite, because

(Ax, x) > m(r)(‖Lu‖2 + ‖p‖2) > m(r)(‖u‖2 + ‖p‖2),
where

m(r) =
2r

2r + 1 +
√

4r2 + 1
>

r

2r + 1

is the minimal eigenvalue of the matrix
(

r −r
−r 1 + r

)
.

Above we used the fact, that ‖Lu‖2 = (LT Lu, u), matrix LT L corresponds
to the mesh operator −∂ ∂ with zero boundary conditions and its minimal eigen-
value equals to

λmin =
4
h2

sin2 πh

2
> 1.
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Remark 3.2. System (3.20) characterises saddle point of so-called augmented
Lagrange function

Lr(u, p, λ) =
1
2
‖p‖2 − (b, u) + θ(p) + (Lu− p, λ) +

r

2
‖Lu− p‖2, r > 0.

Now, we can use Uzawa-type method (3.12) for solving (3.20). However,
the implementation of this method requires the solution at each iteration the
problem (

rLT L −rLT

−rL (1 + r)E

)(
u
p

)
+

(
0

∂θ(p)

)
3

(
b
0

)
,

which is an inclusion (or a variational inequality) with the positive definite
matrix and a diagonal multivalued operator. This problem can not be solved
directly, for its solution we have to use one of the iterative method (so-called
internal iterations) from the previous section. Obviously, this makes the method
(3.12) ”weakly effective”.

Let us apply to problem (3.20) Arrow-Hurwicz-type methods.
First, we consider non-preconditioned method (3.16), i. e. with Du = E and

Dλ = E.
It reads as

1
τ

(uk+1 − uk) + rLT Luk − rLT pk + LT λk = b,

1
τ

(pk+1 − pk)− rLuk + (1 + r)pk + ∂θ(pk+1)− λk 3 0,

1
τ

(λk+1 − λk)− Luk+1 + pk = 0.

(3.21)

The implementation of this method reduces to the multiplication of the matrices
by the given vectors and solving the inclusion

pk+1 + τ∂θ(pk+1) 3 pk + τ(rLuk − (1 + r)pk + λk) ≡ gk,

which solution is

pk+1 =





−1 if gk 6 −1,

gk if − 1 < gk < 1,

1 if gk > 1.

The convergence condition (3.18) for the iterative parameter becomes τ <
2m

mM + ‖B‖2 . The norm

‖B‖2 = ‖BT ‖2 = λmax(BBT ) = λmax(LLT + E) =
4
h2

+ 1.

Here we use the fact, that the matrix LLT corresponds to the mesh operator
−∂ ∂ with Neuman boundary conditions and its maximal eigenvalue equals to
4
h2

.
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Further, for all x = (u, p) and y = (v, q)

(Ax, y) 6 r(‖Lu‖+ ‖p‖)(‖Lv‖+ ‖q‖) + ‖p‖‖q‖ 6 const
m(r)

(
1 +

r

h

)
(Ax, x)1/2‖y‖.

It means that M ' 1
m(r)

(
1 +

r

h

)2

and the convergence condition is

τ < c(r, h) = const
m(r)h2

r2 + 1
.

2

Now, let us apply preconditioned method (3.16) with

Du =
(

rLT L 0
0 (1 + r)E

)
and Dλ = E.

It reads as

1
τ

rLT L(uk+1 − uk) + rLT Luk − rLT pk + LT λk = b,

1
τ

(1 + r)(pk+1 − pk)− rLuk + (1 + r)pk + ∂θ(pk+1)− λk 3 0,

1
τ

(λk+1 − λk)− Luk+1 + pk = 0.

(3.22)

Then implementing method (3.22) we have to solve at any iteration an equation
with the matrix LT L. This is a tridiagonal matrix, so, corresponding system of
the linear equations can be solved by the direct methods very effectively.

Let us obtain an estimate for the iterative parameter providing the conver-
gence.

From the inequality

(Ax, x) = r‖Lu− p‖2 + ‖p‖2 6 r(‖Lu‖2 + ‖p‖2) + ‖p‖2 = (Dxx, x)

it follows (Ax, y) 6 M1/2(Ay, y)1/2‖x||Dx , so M = 1.
Further,

(Bx, λ) = (p− Lu, λ) 6 (‖p‖+ ‖Lu‖)‖λ‖ 6
√

2
r
‖x‖Du‖λ‖,

therefore ‖B‖2∗ 6 2/r and the convergence condition reads as

τ <

(
r

r + 1

)2

.

Method (3.22) is much faster convergent than its non-preconditioned counter-
part (3.21).2
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Example 3.3. Here we describe one more possibility of the reformulation of
problem (3.4), which allows to use for its solving preconditioned Uzawa-type
methods.

Let us introduce once again the artificial constraint Lu = p and rewrite (3.4)
in the following equivalent form:

min
Lu=p

(
1
4
‖Lu‖2 +

1
4
‖p‖2 − (b, u) + θ(p)

)
. (3.23)

The corresponding Lagrange function is

L(u, p, λ) =
1
4
‖Lu‖2 +

1
4
‖p‖2 − (b, u) + θ(p) + (Lu− p, λ)

and its saddle-point satisfies the system



1
2
LT L 0 LT

0
1
2
E −E

L −E 0







u
p
λ


 +




0
∂θ(p)

0


 3




b
0
0


 . (3.24)

Once again we get a partial case of problem (3.10), now with positive definite
matrix

A =




1
2
LT L 0

0
1
2
E


 ,

and the same, as before, function θ and matrix B =
(−L E

)
.

This fact allows to use successfully both Uzawa and Arrow-Hurwicz methods.
Let us consider a preconditioned Uzawa method:

1
2
LT Luk+1 = b− LT λk,

1
2
pk+1 + ∂θ(pk+1) 3 λk,

1
τ

D(λk+1 − λk)− Luk+1 + pk+1 = 0

(3.25)

with matrix D = BBT = LLT + E.
As we remark above, the matrix LLT corresponds to the mesh operator

−∂ ∂ with Neuman boundary conditions, so, implementation of method (3.25)
includes solving at any iteration one mesh problem with Dirichlet boundary

conditions (corresponds to solution a system with the matrix
1
2
LT L) and one

mesh problem with Neuman boundary conditions. Both are easy to solve by
the direct methods.

Now,

m = λmin(A) =
2
h2

sin2 πh

2
+

1
2

> 1,

and from (3.15) the sufficient convergence condition for iterative parameter be-
comes

τ 6 1.
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3.2.4 Numerical example

Let us consider the problem form Example 3.1, which is to minimise the func-
tional

J(u) =
1
2

1∫

0

u′ 2(t)dt−
1∫

0

b(t)u(t)dt, b(t) ∈ C[0, 1],

over the set {u(t) ∈ H1
0 (0, 1) : |u′(t)| 6 1 for t ∈ (0, 1)}.

The finite difference approximation of this problem leads to the minimisation
of the function

1
2
‖Lu‖2 − (b, u) + θ(Lu), u ∈ Rn

with matrix

A = LT L, L = h−1




1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 1
0 0 0 . . . 0 −1



∈ R(n+1)×n.

and θ(p) being the indicator function of the set {p ∈ R(n+1) : |pi| 6 1 ∀i}.
We solved this problem by applying Arrow-Hurwicz method for finding a

saddle point of augmented Lagrangian

Lr(u, p, λ) =
1
2
‖p‖2 − (b, u) + θ(p) + (Lu− p, λ) +

r

2
‖Lu− p‖2, r > 0,

and Usawa method for finding a saddle point of Lagrange function

L(u, p, λ) =
1
4
‖Lu‖2 +

1
4
‖p‖2 − (b, u) + θ(p) + (Lu− p, λ).

Exact solution is taken as

u∗ =





x, x < 0.25,

−16(x− 0.25)4 + 16(x− 0.25)3 − 6(x− 0.25)2 + x, 0.25 < x < 0.75,

1− x, x > 0.75

and corresponding right-hand side

b =





100, x < 0.25,

(−ui−1 + 2ui − ui+1)/h2, 0.25 < x < 0.75,

100, x > 0.75.

Stopping criterion was: ‖u− u∗‖ < ε = 10−4.
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Arrow-Hurwicz method for augmented Lagrangian
r = 1

N 51 51 51 51 101 101 101 101 501 1001
τ 0.8 0.7 0.6 0.5 0.8 0.7 0.6 0.5 0.5 0.5

n(ε) 76 66 58 59 76 66 58 59 59 59
‖r1‖L2 0.08 0.03 0.02 0.01 0.08 0.3 0.3 0.01 0.01 0.01

r = 10

N 51 101 501 1001 1001 1001 1001 1001 1001 1001
τ 1 1 1 0.5 0.4 0.6 0.7 0.8 1 1.1

n(ε) 121 121 118 239 300 199 170 148 118 -
‖r1‖L2 0.01 0.02 0.04 0.05 0.06 0.06 0.06 0.06

r = 0.1

N 51 51 51 51 51 51 101 501 1001
τ 1 0.5 0.1 0.05 0.03 0.02 0.05 0.05 0.05

n(ε) - - - 652 692 847 652 652 652
‖r1‖L2 - - - 0.01 0.04 0.02 0.02 0.02

Uzawa method (3.25) with preconditioner D = LLT + E.

N 51 101 101 101 501
τ 10 10 11 9 10

n(ε) 2443 8452 - 9392 greater than 100000
‖r1‖L2 0.001 0.006 - 0.006

Non-preconditioned Uzawa method (3.25): D = E.

N 51 51 51 101 501 1001
τ 0.1 0.5 0.4 0.4 0.4 0.4

n(ε) 49 - 11 11 11 11
‖r1‖L2 0.0005 - 0.05 0.04 0.05 0.05

3.3 Douglas-Rachford splitting method

3.3.1 General convergence result

Let us write problem (3.10) in the following form:
(

A −BT

B 0

)(
u
λ

)
+

(
∂ϕ(u)

0

)
3

(
f
g

)
. (3.26)

We will solve problem (3.26) by Douglas-Rachford method:

1
τ

(
uk+1/2 − uk

λk+1/2 − λk

)
+

(
A −BT

B 0

)(
uk

λk

)
+

(
∂ϕ(uk+1/2)

0

)
3

(
f
g

)
, (3.27)
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1
τ

(
uk+1 − uk+1/2

λk+1 − λk+1/2

)
+

(
A −BT

B 0

)(
uk+1 − uk

λk+1 − λk

)
=

(
0
0

)
. (3.28)

Theorem 3.4. Let the assumptions (3.8) and (3.9) be valid, and matrix A be
positive semidefinite. Then iterative method (3.27), (3.28) converges for any
iterative parameter τ > 0.

The implementation of the first step (3.27) of the method consists of the
solving an inclusion with of the operator E + τ∂ϕ. It is easy to do in case of a
diagonal ∂ϕ.

On the second step (3.28) one needs to solve a system of the linear algebraic

equations with a positive definite matrix
(

E + τA −τBT

τB E

)
.

3.3.2 Application to a mesh variational inequality

Example 3.4. A non-linear filtration problem

A mathematical model for a process of filtration of non-compressible liquid
in a porous medium can pe formulated as the following variational inequality:
find u ∈ H1

0 (Ω), suah that for all v ∈ H1
0 (Ω)

∫

Ω

∇u · ∇(v − u)dt +
∫

Ω

(|∇v| − |∇u|)dt >
∫

Ω

f(v − u)dt. (3.29)

Variational inequality (3.29) is equivalent to the minimization over the space
H1

0 (Ω) of the functional

J(u) =
1
2

∫

Ω

|∇u|2dt +
∫

Ω

|∇u|dt−
∫

Ω

fudt.

If u is a solution of the problem, then the domain Ω is divided into two subdo-
mains:

Ω+ = {t ∈ Ω : |∇u(t)| > 0} and Ω0 = {t ∈ Ω : |∇u(t)| = 0}.

In the points of Ω+ a solution of (3.29) (in supposition that it is smooth enough)
satisfies the equation

div
(
−∇u(t) +

∇u(t)
|∇u(t)|

)
= f(t).

Function u(t) has a sense of a liquid pressure, while v(t) = −∇u(t)+∇u(t)/|∇u(t)|
— a filtration velocity, which is a discontinuous function of the gradient of pres-
sure: |v| = |∇u|+ 1, if |∇u| > 0, and v = 0 for |∇u| = 0.

We approximate (3.29) by using finite element method. Let Ω be a polygon,
Th = {δi}i be its conforming decomposition into triangles δi with the diameter
hi of a δi and h = max

i
hi. We suppose that the angles of all triangles δi are
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bounded from below by a constant, independent on i. Define the space of
continuous and piecewise linear functions

V 0
h = {uh ∈ C(Ω) : uh ∈ P1 ∀δ ∈ Th, uh(t) = 0 ∀t ∈ ∂Ω}

and the space of piecewise constant functions Wh = {uh ∈ P0 ∀δ ∈ Th}. The
approximate problem is to find a minimum uh ∈ V 0

h of the function

J(uh) =
1
2

∫

Ω

|∇uh|2dt +
∫

Ω

|∇uh|dt−
∫

Ω

fuhdt.

Let ph = ∇uh for t ∈ δk and for all triangles δk ∈ Th, i. e. pih = ∂uh/∂ti ∈
Wh, i = 1, 2. Then the equivalent formulation of the approximate problem is





min
(uh,ph)∈Kh

{
J(uh, ph) =

1
2

∫

Ω

|ph|2dt +
∫

Ω

|ph|dt−
∫

Ω

fuhdt
}
,

Kh = {(uh, ph) ∈ V 0
h × (Wh)2 : ph = ∇uh for t ∈ δk, ∀δk ∈ Th}.

(3.30)

Let ωh = {ti}m
i=1 be the set of all vertices of the triangles δ ∈ Th, lying in

Ω, m = card ωh, and ξh = {ti}s
i=1 is the set of barycenters of δ ∈ Th. To

a function vh ∈ V 0
h the vector v ∈ Rm corresponds, which coordinates are

vi = vh(ti), ti ∈ ωh. Similarly, to a function qh ∈ Wh vector q ∈ Rs with
coordinates qi = qh(ti), ti ∈ ξh corresponds. As above, we use notations v ⇔ vh,
q ⇔ qh for this corresponding.

Let matrices D, L1, L2 and vector f be defined by:

(Dp, q) =
∫

Ω

ph(t)qh(t)dt, (L̃iu, q) =
∫

Ω

∂uh

∂ti
(t)qh(t)dt, (f, v) =

∫

Ω

f(t)vh(t)dt

for Rm 3 u, v ⇔ uh, vh ∈ V 0
h , Rs 3 p, q ⇔ ph, qh ∈ Wh.

The equality pih =
∂uh

∂ti
for all triangles δk ∈ Th mean that

∫

Ω

(
∂uh

∂ti
− pih

)
qhdt =

0 for all qh ∈ Wh, or,

(Liu−Dpi, q) = 0 ∀q ⇔ Liu = Dpi.

Let
Li = D−1L̃i, L = (L1, L2)T , D = diag(D,D).

The statement (uh, ph) ∈ Kh is equivalent to Liu = pi, i = 1, 2, or, Lu = p.
Further, ∫

Ω

|ph|dt =
∑

δk∈Th

dkk|p|i = (D|p|, 1),

where D = diag(d11, d22, . . . , dss). Below we denote ϕ(p) = (D|p|, 1).
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After introducing all these notations, we can write problem (3.30) as

min
Lu=p

{
f(u, p) =

1
2
(Dp, p) + ϕ(p)− (f, u)

}
. (3.31)

Corresponding Lagrange function is

Lr(u, p, λ) =
1
2
(Dp, p) + ϕ(p)− (f, u) + (Lu− p, λ),

and its saddle point satisfies the following system:



0 0 LT

0 D −E
L −E 0







u
p

λ


 +




0
∂ϕ(p)

0


 3




f
0
0


 , (3.32)

where E is the unit s2 × s2 matrix.
Thus, we have a problem, which is similar to the problem of the previous

example. For its solving we can use all iterative methods, described above:
Uzawa and Arrow-Hurwicz methods, splitting methods.

The only difference in the implementation of these methods is that now
instead of solving a system of scalar inclusions we have solve a system of two-
dimensional inclusions

pi + τdii∂ϕi(pi) 3 gi, (3.33)

where pi = (p1i, p2i), ϕi(pi) =
√

p2
1i + p2

2i and gi is a given vector. By definition
of the subdifferential

∂ϕi(pi) =

{
pi|pi|−1 if pi 6= 0,

closed unit ball |pi| 6 1 if pi = 0.

Thus, the unique solution of (3.33) is given by

pi = 0, if |gi| 6 τdii,

|pi| = |gi| − τdii pi = gi

(
1 +

τdii

|pi|
)−1

, if |gi| > τdii.
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§4 Appendix

4.1 Some notations and results from the theory of matri-
ces and functional spaces

R is the space of real numbers, R = R∪+∞, x ∈ Rn is an n-dimensional vector

with real coordinates; (x, y) =
n∑

i=1

xiyi is euclidian scalar product in vector

space Rn and ‖x‖ = (x, x)1/2 is the corresponding norm.

A ∈ Rn×m is a rectangular n × m matrix (with n rows and m columns),
AT ∈ Rm×n is its transpose matrix.

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ is the norm of the matrix A, subordinate to euclidian norm

of the vectors;
in case of a symmetric matrix A ∈ Rn×n

‖A‖ = sup
x 6=0

(Ax, x)
‖x‖2 = max

16i6n
|λi(A)|,

where λi(A) are eigenvalues of A.

In general case of a rectangular n×m matrix A, for its norm subordinated
to euclidian norm of the vectors, the following equalities are true:

‖A‖ = max
16i6n

√
λi(AAT ) = max

16i6m

√
λi(AT A) = ‖AT ‖.

‖x‖A = (Ax, x)1/2 is energetic norm of a vector x in case when A is a
symmetric and positive definite matrix.

ρ(A) = max
16i6n

|λi(A)| is the spectral radius of a matrix A ∈ Rn×n.

For any norm of a matrix ‖A‖, which is subordinate to a norm of the vectors,

ρ(A) = lim
k→∞

‖Ak‖1/k 6 ‖A‖.

For any ε > 0 there exists a norm ‖.‖∗ in Rn, such that for a corresponding
subordinate norm of a matrix A ∈ Rn×n the inequality ‖A‖∗ 6 ρ(A)+ ε is true.

For any matrix A ∈ Rn×n its spectral radius ρ(A) < 1 if and only if
lim

k→∞
Ak = 0.

Rank of a matrix A ∈ Rn×m, denoted by rankA, is the maximal degree of a
nonzero minor of A; rankA 6 min(n,m).

If rankA = min(n, m), then matrix A is called as matrix of full rank.
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Ω is a bounded domain in R2 with a piecewise smooth boundary ∂Ω.

∇u = (
∂u

∂x1
,

∂u

∂x2
)T is the gradient of a function u; ∆u =

∂2u

∂x2
1

+
∂2u

∂x2
2

is a

value of Laplace operator ∆ on a function u.

L2(Ω) is Lesbegue space of the functions u(x), x ∈ Ω, such that u2(x)
are integrable in Ω; L2(Ω) is a Hilbert space with the scalar product (u, v) =
∫

Ω

u(x)v(x)dx and the corresponding norm ‖u‖ =




∫

Ω

u2(x) dx




1/2

.

H1(Ω) is Sobolev space of the functions u ∈ L2(Ω), which have first order

generalized (weak) derivatives
∂u

∂xi
∈ L2(Ω) ∀i. H1(Ω) is a Hilbert space with

the scalar product (u, v) =
∫

Ω

(∇u(x) ·∇v(x)+u(x)v(x)) dx and the correspond-

ing norm ‖u‖ =
√

(u, u) =




∫

Ω

(|∇u(x)|2 + u2(x)) dx




1/2

.

H1
0 (Ω) ⊂ H1(Ω) is the subspace of H1(Ω), such that functions from H1

0 (Ω)
vanish on the boundary ∂Ω (their traces on the boundary equal to zero). The
H1-norm of the space H1

0 (Ω) is equivalent to the norm

‖u‖0 =




∫

Ω

|∇u(x)|2 dx




1/2

,

i. e. there exists a constant c (depending only on the domain Ω), such that for
all u ∈ H1

0 (Ω)




∫

Ω

|∇u(x)|2 dx




1/2

6




∫

Ω

(|∇u(x)|2 + u2(x)) dx




1/2

6 c




∫

Ω

|∇u(x)|2 dx




1/2

.

60


